首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new broadband ECRH (Electron Cyclotron Resonance Heating) system is currently under construction at the ASDEX Upgrade tokamak. This system will employ multi-frequency gyrotrons step-tunable in the range 105–140 GHz. A set of two corrugated polarizer mirrors will be applied to provide for an arbitrary polarization of the Gaussian beam injected into the plasma. The principal bandwidth of such a two-polarizer setup has been evaluated. It can be shown that two mirrors with sinusoidal grooves and corrugation depths adjusted to the center frequency of 122.5 GHz will satisfy the requirements.  相似文献   

2.
基于狄拉克半金属宽带的可调谐太赫兹偏振器   总被引:1,自引:0,他引:1  
提出了一种基于狄拉克半金属超材料的双开口环结构的宽带偏振器,研究了狄拉克半金属费米能级以及中间介质厚度对偏振转换性能的影响。结果表明:当中间介质厚度为22μm,费米能级为70meV时,在1.44THz和1.95THz两个谐振频率处,偏振转换效率为100%;当中间介质厚度为22μm时,随着狄拉克半金属费米能级从64meV增加到70meV,高低两个谐振峰均产生蓝移;当狄拉克半金属费米能级为70meV时,随着基底介质厚度从19μm增加到22μm,低频处的谐振峰未移动,高频率点处的谐振峰红移。  相似文献   

3.
Nanoscale processor designs pose new challenges not encountered in the world of conventional CMOS designs and manufacturing. Nanoscale devices based on crossed semiconductor nanowires (NWs) have promising characteristics in addition to providing great density advantage over conventional CMOS devices. This density advantage could, however, be easily lost when assembled into nanoscale systems and especially after techniques dealing with high defect rates and manufacturing related layout/doping constraints are incorporated. Most conventional defect/fault-tolerance techniques are not suitable in nanoscale designs because they are designed for very small defect rates and assume arbitrary layouts for required circuits. Reconfigurable approaches face fundamental challenges including a complex interface between the micro and nano components required for programming. In this paper, we present our work on adding fault-tolerance to all components of a processor implemented on a 2-D semiconductor NW fabric called nanoscale application specific integrated circuits (NASICs). We combine and explore structural redundancy, built-in nanoscale error correcting circuitry, and system-level redundancy techniques and adapt the techniques to the NASIC fabric. Faulty signals caused by defects and other error sources are masked on-the-fly at various levels of granularity. Faults can be masked at up to 15% rates, while maintaining a 7 density advantage compared to an equivalent CMOS processor at projected 18-nm technology. Detailed analysis of yield, density, and area tradeoffs is provided for different error sources and fault distributions.  相似文献   

4.
In this letter, a kind of metamaterial superstrate based on rectangular metallic grids is presented to enhance the directivity of patch antenna at two frequency bands for two orthogonal polarizations. According to the periodic boundary condition, the influences of its important geometry parameters are investigated in detail by simulating its unit cell. It is found that the transmission peak frequency is intimately related to the size of rectangular metallic grid. Then, a dual band dual polarization patch antenna with metamaterial is studied and compared with conventional patch antenna. It is demonstrated that by introducing the proposed metamaterial superstrate, the gain of the patch antenna is improved by 9.5 dB at 14.1 GHz for x polarization and 12 dB at 15.4 GHz for y polarization, respectively.  相似文献   

5.
A simple wide-view and broadband circular polarizer comprising of a linear polarizer and two uniaxial films is proposed to enhance the viewing angle of transflective liquid crystal displays (LCDs). For the transmissive mode, over the entire 90deg viewing cone, the normalized light leakage from two stacked circular polarizers is suppressed to below 1.5times10-2, and contrast ratio over 10:1 is obtained using a normally black vertically aligned transflective LCD. At the same time, this configuration warrants a broadband operation and reasonably good viewing angle (10:1 contrast ratio is over 40 at all directions) for the reflective mode. The physical mechanisms for achieving broadband operation and wide viewing angle are discussed.  相似文献   

6.
纳米金属光栅的透射光谱对临近材料折射率变化非常敏感,可以通过改变介质折射率实现可调的彩色滤光,将双层纳米金属光栅应用于显示装置上具有工艺制备简单、色度和对比度高等特点.采用纳米金属光栅结构,通过严格耦合波理论模拟和表面等离子体共振原理设计了一种新型的透射式电润湿显示器件.在650 nm周期、空气环境下,通过数值优化在690 nm波长处得到了50%的单色透射,而在水溶液的环境下,由于共振移动到红外,可以实现黑态显示,从而验证了灰度的可调.该研究将为轻薄、节能和高分辨率的新型电浸润显示器件设计提供全新思路.  相似文献   

7.
Plasmonic nanolasers provide a valuable opportunity for expanding sub-wavelength applications. Due to the potential of on-chip integration, semiconductor nanowire (NW)-based plasmonic nanolasers that support the waveguide mode attract a high level of interest. To date, perovskite quantum dots (QDs) based plasmonic lasers, especially nanolasers that support plasmonic-waveguide mode, are still a challenge and remain unexplored. Here, metallic NW coupled CsPbBr3 QDs plasmonic-waveguide lasers are reported. By embedding Ag NWs in QDs film, an evolution from amplified spontaneous emission with a full width at half maximum (FWHM) of 6.6 nm to localized surface plasmon resonance (LSPR) supported random lasing is observed. When the pump light is focused on a single Ag NW, a QD-NW coupled plasmonic-waveguide laser with a much narrower emission peak (FWHM = 0.4 nm) is realized on a single Ag NW with the uniform polyvinylpyrrolidone layer. The QDs serve as the gain medium while the Ag NW serves as a resonant cavity and propagating plasmonic lasing modes. Furthermore, by pumping two Ag NWs with different directions, a dual-wavelength lasing switch is realized. The demonstration of metallic NW coupled QDs plasmonic nanolaser would provide an alternative approach for ultrasmall light sources as well as fundamental studies of light matter interactions.  相似文献   

8.
研究了多层金属栅网与雷达罩介质壁混合结构的阻抗匹配特性.通过将金属栅网的等效感性电纳与雷达罩介质壁的容性电纳进行匹配,扩展了雷达罩的工作带宽和电波入射角范围,降低了雷达罩对宽频带雷达天线的电性能影响.文中给出了某些典型混合结构的仿真计算结果.结果表明,在X波段,雷达罩电波入射角0°~60°,传输效率大于90%的带宽可达4 GHz以上.该匹配技术已成功应用在某雷达天线罩上.  相似文献   

9.
Reconfigurability is one of the most critical properties of nanophotonic systems and, consequently, methods for enabling a significant degree of functionality are highly sought after. However, dynamically responsive control in top‐down fabricated photonic structures often requires extreme conditions and yields moderate modulation capability. In sharp contrast to top‐down methods, directed self‐assembly of micro‐ and nanoparticles offers a distinct avenue for reconfigurable photonics. In the present work, gold nanowire lattices are formed via electric field directed assembly in order to take advantage of their collective optical properties. The lattices are reconfigured on‐demand between two different functional states, in the form of broadband polarizers. By selectively switching the electric field between two orthogonal electrode pairs, a maximum transmission contrast of ≈50% is observed in the near‐infrared regime. Moreover, the reconfigurable transmission spectra, which are highly dependent on the nanowire size and electric field conditions, are reversible. The demonstrated proof‐of‐concept nanowire lattice polarizer provides potential for electrically reconfigurable photonic devices such as ultra‐compact polarization components, electro‐optic switches, and on‐chip modulators.  相似文献   

10.
文中采用传输矩阵理论和二端口级联网络分析了多层金属栅网混合结构的吸波特性,通过将多层金属栅网与多层介质阻抗匹配,在介质厚度不变的情况下,明显提高了混合结构的吸收峰值;同时,通过调整每层金属栅网的半径、间距,可调整混合结构吸收峰值位置,给出了典型混合结构的仿真计算结果.结果表明,混合结构吸收峰值可提高6 dB以上,在保证吸收效果的前提下,调整了吸收峰值的位置,可根据要求用于设计不同频段的吸波材料.  相似文献   

11.
It is been widely reported that plasmonic effects in metallic nanomaterials can enhance light trapping in organix solar cells (OSCs). However, typical nanoparticles (NP) of high quality (i.e., mono‐dispersive) only possess a single resonant absorption peak, which inevitably limits the power conversion efficiency (PCE) enhancement to a narrow spectral range. Broadband plasmonic absorption is obviously highly desirable. In this paper, a combination of Ag nanomaterials of different shapes, including nanoparticles and nanoprisms, is proposed for this purpose. The nanomaterials are synthesized using a simple wet chemical method. Theoretical and experimental studies show that the origin of the observed PCE enhancement is the simultaneous excitation of many plasmonic low‐ and high‐order resonances modes, which are material‐, shape‐, size‐, and polarization‐dependent. Particularly for the Ag nanoprisms studied here, the high‐order resonances result in higher contribution than low‐order resonances to the absorption enhancement of OSCs through an improved overlap with the active material absorption spectrum. With the incorporation of the mixed nanomaterials into the active layer, a wide‐band absorption improvement is demonstrated and the short‐circuit photocurrent density (Jsc) improves by 17.91%. Finally, PCE is enhanced by 19.44% as compared to pre‐optimized control OSCs. These results suggest a new approach to achieve higher overall enhancement through improving broadband absorption.  相似文献   

12.
Electrical contact resistance can be reduced using an array of compliant and conductive nanowires which make a large area of intimate contact with an opposing surface. In this paper, analyses of electrical contact resistance, fabrication methods, and experimental results of contact resistance for compliant nickel nanowires are presented. To analyze, predict, and measure the contact resistance, models of surface contact between an array of conductive nanowires and a spherical tip probe are presented. Then, an estimate of real area of contact from the measured contact resistance is discussed. The fabrication methods elaborate on electroforming nickel fibers using commercially available nano-porous filters. Finally, experimental results of contact resistance between a spherical tip probe and arrays of nickel nanowires as well as the contact resistance between a flat tip probe and arrays of nickel nanowires are presented. From these experimental results, we show resistance reduction by a factor of more than 20 at a load of 10 mN or less, compared to contact with a flat sheet, and a reduction by a factor of 3 using a spherical probe.   相似文献   

13.
The crystal structure of a material has a large impact on the electronic and material properties such as band alignment, bandgap energy, and surface energies. Au‐seeded III–V nanowires are promising structures for exploring these effects, since for most III–V materials they readily grow in either wurtzite or zinc blende crystal structure. In III–Sb nanowires however, wurtzite crystal structure growth has proven difficult. Therefore, other methods must be developed to achieve wurtzite antimonides. For GaSb, theoretical predictions of the band structure diverge significantly, but the absence of wurtzite GaSb material has prevented any experimental verification of the properties. Having access to this material is a critical step toward clearing the uncertainty in the electronic properties, improving the theoretical band structure models and potentially opening doors toward application of this material. This work demonstrates the use of InAs wurtzite nanowires as templates for realizing GaSb wurtzite shell layers with varying thicknesses. The properties of the axial and radial heterointerfaces are studied at the atomic scale by means of aberration‐corrected scanning transmission electron microscopy, revealing their sharpness and structural quality. The transport characterizations point toward a positive offset in the valence bandedge of wurtzite compared to zinc blende.  相似文献   

14.
吕斌  杨震  林畅 《信号处理》2014,30(12):1502-1509
认知无线电系统中,压缩感知理论已广泛运用于宽带频谱检测。但是,压缩感知中的重构问题造成频谱检测算法计算复杂度高,且在低信噪比下检测效果不佳。本文提出了采用支持向量机的宽带频谱感知算法,该算法利用支持向量机建立频谱检测分类器,代替信号的重构与检测过程。根据系统对实时性的要求,分别设计了多级二元分类器感知算法和单级多元分类器感知算法。前者适用于分级数有限且实时性要求不高的场景,后者可大幅降低系统的算法复杂度,降低感知时间,适用于实时检测系统。仿真结果表明,与基于重构的能量检测算法相比,本文提出的两种算法均可以有效改善系统对噪声的鲁棒性,提高在较小信噪比下的检测性能。   相似文献   

15.
金属微粒由于其独特的化学以及电磁性质,在生物医学和表面化学领域的应用越来越广泛,利用光镊俘获金属微粒的报道也越来越多,可操控的金属粒子尺寸也越来越小.光镊作为一种重要的捕获微小粒子的工具,在早期多用来捕获胶体颗粒及生物细胞等透明粒子,很少有报道用光镊来捕扶像会属粒子一类的小透明粒子.综合了近年来出现的利用光镊俘获金属粒子的技术,从原理、实验设备、实验环境等方面对现有俘获金属粒子的技术做一个全面的介绍.  相似文献   

16.
Grid security infrastructure (GSI) provides the security in grids by using proxy certificates to delegate the work of authentication. At present, revocation proxy certificate has two kinds of methods, one is using certificate revocation list (CRL) and the other is giving the certificate a short period of validity. However, when a lot of certifications are revoked, CRL will be the burden in the system. If the certificate has a short period of validity, entities should be often updating the certificate. In this paper, we propose a scheme for proxy certificate revocation using hash tree. Our scheme only needs hash value comparisons to achieve the purpose of certificate revocation. Previous two methods have to wait the expiration of the certificate. Therefore, our scheme is more flexible than previous methods.  相似文献   

17.
Conventional broadband beamforming structures make use of finite-impulse-response (FIR) filters in each channel. Large numbers of coefficients are required to retain the desired signal-to-interference-plus-noise-ratio (SINR) performance as the operating bandwidth increases. It has been proven that the optimal frequency-dependent array weighting of broadband beamformers could be better approximated by infinite-impulse-response (IIR) filters. However, some potential problems, such as stability monitoring and sensitivity to quantization errors, of the IIR filters make the implementation of the IIR beamformers difficult. In this paper, new broadband IIR beamformers are proposed to solve these problems. The main contributions of this paper include 1) the Frost-based and generalized sidelobe canceller (GSC)-based broadband beamformers utilizing a kind of tapped-delay-line-form (TDL-form) IIR filters are proposed; 2) the combined recursive Gauss-Newton (RGN) algorithm is designed to compute the feedforward and feedback weights in the Frost-based implementation; and 3) in the GSC-based structure, the unconstrained RGN algorithm is customized for the TDL-form IIR filters in the adaptive beamforming part. Compared with the beamformer using direct-form IIR filters, the new IIR beamformers offer much easier stability monitoring and less sensitivity to the coefficient quantization, while comparable SINR improvement over the conventional FIR beamformer is achieved  相似文献   

18.
采用时域有限差分法研究了内嵌镜像对称矩形腔长度、宽度及其位置对楔形金属狭缝阵列结构透射特性的影响.研究发现,采用此结构形成的光子晶体结构所产生的能带可以调控禁带,不仅在短波长范围存在明显的传输禁带,而且在长波长范围具有较好的增强透射,表明这种内嵌镜像对称矩形腔进一步破坏了类法布里-珀罗腔共振条件,更有利于短波长范围表面等离激元能量局域在腔内,同时提高长波长范围的透射率.矩形腔位置是影响传输禁带和透射特性的主要因素,其越接近中心位置,禁带越宽,透射率越高;矩形腔厚度主要影响禁带宽度,厚度为140 nm时,禁带宽度可达236 nm;矩形腔长度主要影响透射特性,长度为260 nm时,透射率可达95%.  相似文献   

19.
利用现有的卫星数据视频广播 (DVB)标准和协议建立宽带因特网系统 (BIS)是目前卫星直播的主要业务之一。这样能够提供快速的 Web浏览、文件下载、实时数据更新和其他广播业务。这些服务使得卫星广播系统同时快速地传输文件、音频和视频信息成为可能。宽带因特网是一个未来的网络 ,能够同目前标准的卫星网络进行无缝连接 ,计划宽带因特网将在未来的发展中与有线电视、x DSL、无线系统、光纤和数字地面前端系统进行无缝集成。1卫星数据广播系统世界最新的通信技术一直在致力于开发卫星数据广播系统与现有的卫星网络进行无缝连接 ,使用 DV…  相似文献   

20.
根据HFC网络的优势,介绍两种宽带上网接入技术,从网络安全性、数据速率、承载业务和运行维护等方面对双向HFC和以太网接入方式加以比较,提出双向HFC城域网光纤到楼头、五类线入户或直接以太网接入是当前广播电视宽带网接入或将来向FTTH过渡的理想形式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号