首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Amorphous SiO2 thin films were deposited on Ti6Al4V alloy by sol-gel processing. Isothermal and cyclic oxidation tests of the coated and uncoated specimens were performed at 700 and 800 °C. The SiO2 film exhibited beneficial effects on the oxidation resistance of the alloy. Titania scales formed on the uncoated specimens, and severe spallation and stratification of the scales were observed. The oxidation rates of the silica coated specimens were decreased significantly. The silica film shrunk to about a quarter in thickness, probably by mechanism of crystallization of silica and evaporation of the organic additments. The oxide scales formed on the coated specimens were multilayered. Beneath the silica film, formation of a thick rutile titania layer followed by a thin alumina layer occurred. Above the silica film, alumina plus minor titania layer formed. It is deduced therefore that the growth of the multilayered and mixed oxide scales was dominated by both outward diffusion of metal and inward diffusion of oxygen.  相似文献   

2.
The passivation behavior of Yucca Mountain Repository rock bolt carbon steel in deaerated 3.5% NaCl solution containing SiO32− and HCO3 ions was investigated by potentiodynamic polarization, electrochemical impedance spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopic methods. Polarization results indicate that combinations of silicate and bicarbonate anions decrease the passive current density and raise the pitting potential. XPS results indicate the enrichment of silica at passive potentials and the formation of mixed FeCO3 and silica film at lower potentials. This change in film composition was responsible for the changes in corrosion rate at lower and higher potentials. XPS results also support the thermodynamic data with regard to the occurrence of second oxidation peak observed in the polarization curves to be due to the oxidation of FeCO3 to Fe2O3.  相似文献   

3.
Heat-resistant alloys used in mixed-oxidant environments rely on the formation of a chromia, alumina, or silica surface film for corrosion resistance and the presence of second-phase precipitates in the matrix often for their strength properties. The growth of the oxide film on such alloys is often accompanied by the dissolution of precipitates in the alloy subsurface region. Continued oxidation combined with oxide-scale spallation tends to decrease the content of the oxide-forming constituent to such a level that protective scaling can no longer occur and severe degradation can develop. In the present work, the initial corrosion processes involving the complex coupling between oxide scale growth and precipitate dissolution is simulated computationally. As an example, a Ni-Cr alloy containing Cr 23 C 6 precipitates was exposed to an oxidizing-carburizing environment. An approach combining finite difference and Newton-Raphson methodologies is developed to model this diffusion/ dissolution process, incorporating the point-defect-chemistry aspects of the oxide scale. The model is able to predict the chemical and microstructural evolution of high-chromium austenitic alloys during the initial stages of oxidation-carburization.  相似文献   

4.
Alkali leaching was employed to investigate the separation of alumina and silica in roasted kaolin obtained by roasting kaolin alone in air at 1273 K for 60 min and in clinker prepared by roasting the mixed raw meal of kaolin, ferric oxide and coal powder with Fe2O3/Al2O3/C molar ratio of 1.2:2.0:1.2 in reducing atmosphere at 1373 K for 60 min. The thermodynamic analyses and alkali leaching results show that the composition of the Al?Si spinel in roasted kaolin is close to that of 3Al2O3·2SiO2 and the spinel is dissolved with increasing leaching time, resulting in difficulty in deeply separating alumina and silica in kaolin by the traditional roasting?leaching process. On the contrary, the efficient separation of alumina and silica in kaolin can be reached by fully converting kaolinite into insoluble hercynite and soluble free silica, namely quartz solid solution and cristobalite solid solution, during reduction roasting, followed by alkali leaching of the obtained clinker. Furthermore, experimental results from treating high-silica diasporic bauxite indicate that the reduction roasting?alkali leaching process is potential to separate silica and alumina in aluminosilicates.  相似文献   

5.
对2A12铝合金表面的微弧氧化膜进行了高温氧化实验研究。结果表明:微弧氧化膜层的高温抗氧化性能随着温度的升高而降低,但氧化指数均在2以上,说明微弧氧化膜层对于2A12铝合金起到了保护作用,有效地阻止了高温氧化时的氧扩散。微弧氧化膜层抗空冷热震性能要优于抗水冷热震性能,在60次热震循环后,水冷热震的合金边角处出现膜层脱落现象,而空冷热震的合金只在表面出现裂纹,没有膜层脱落现象出现。微弧氧化膜热震失效主要由膜层与基体热膨胀系数不同、膜层与H2O、氧气反应分别生成氢氧化物与氧化物所导致;膜层内部的CeO2起到减小孔径的作用,在热震反应初期能够有效地降低热震对膜层的影响,但随着循环次数增多,生成碱式碳酸盐和氢氧化物,导致微弧氧化膜失效。  相似文献   

6.
Mechanisms are proposed to explain the oxidation rate behavior of Fe-8Cr-10Ni alloys to which varying amounts of either Si (0–3%) or Mo (0–6%), or both have been added. The formation and breakdown of a silica sublayer cause significant changes in the oxidation mechanism. The formation of the silica depends on preformation of a Cr2O3 outer layer. The addition of Mo enhances the oxidation protection of Fe-Si alloys by producing an Fe-Mo-Si precipitate in the base metal.  相似文献   

7.
The oxidation resistance of MSi2 compounds with M = V, Ti, Cr was investigated from 450 to 950 °C in air under isothermal and cyclic conditions. Vanadium, chromium and titanium disilicide were not subjected to the pest phenomenon at 650 °C over 800 1-h cycles. The results demonstrated very low weight gains regardless of the testing conditions. Oxidation tests were also performed over long duration (1000 h) to identify the oxidation products. The MSi2 compounds were all subjected to the simultaneous oxidation of M and Si despite the formation of a protective silica scale. Increasing the duration of oxidation enhanced the protective properties of the silica scale. Therefore, short-term measurements (by thermogravimetry) did not allow an extrapolation of the MSi2 lifetime. The formation of molten V2O5 induced a higher oxidation rate of VSi2 and delayed the establishment of the protective silica scale compared with CrSi2 and TiSi2.  相似文献   

8.
An in-situ photoacoustic (PAS) technique, using a piezoelectric detector with high sensitivity was applied to the study on duplex oxide films anodically formed on copper in pH 8.4 borate solution. The PAS signals from the copper electrode were produced by an irradiation of light beam with a wavelength of 514.5 nm. The PAS amplitude during cathodic reduction of the outer oxide layer to Cu2O changed in the opposite direction, depending on the anodic potential of film formation and oxidation time. Assuming that the change in PAS amplitude is proportional to both optical absorption coefficient and film thickness, it was deduced from comparison of the estimated absorption coefficients for Cu (OH)2, CuO and CuO0.67 films that dehydration of the outer layer having an average composition of CuOx (OH)2?2x proceeded with increasing anodic potential of film formation and oxidation time during growth of the duplex oxide film. Moreover, it was found that the change in PAS amplitude during cathodic reduction of the total Cu2O film involving the inner layer to metallic copper was proportional to the electric charge required for cathodic reduction, i.e., the film thickness, irrespective of anodic potential of film formation and oxidation time, which proved the validity of the above assumption.  相似文献   

9.
利用循环氧化法,研究了不同Si含量(0%,1%,3%,质量分数)的625合金熔覆层在700、800、900 ℃下氧化144 h后的高温氧化行为。用XRD分析了氧化物相。通过SEM/EDS研究了氧化物表面和截面的形貌、元素组成和氧化膜的厚度。结果表明,不同温度下试样的氧化动力学都保持抛物线规律,随着温度的升高,氧化增重逐渐增加。通过观察,在900 ℃时,0% Si含量的625合金熔覆层出现了氧化膜大面积剥落的情况,3% Si含量的合金熔覆层氧化膜保持完整。在700 ℃时,随着Si含量增加,氧化膜表面的氧化颗粒尺寸减小且更加致密,同时促进了Cr2O3氧化物的生成。在700 ℃下,0 % Si含量的试样出现了大片的内氧化区域;1% Si含量的试样基体部分出现了2处条状的含Ni,Cr,Mo的氧化物相区;而3% Si含量的试样氧化后由于生成了富Si的内氧化层,这阻止了内氧化的发生。外层Cr2O3氧化膜和内层SiO2的联合作用既阻止了O阴离子的渗入也抑制了Fe等金属离子的扩散,提高了合金熔覆层的抗氧化性。  相似文献   

10.
《Acta Materialia》2003,51(11):3109-3120
The high temperature oxidation resistance of Ti–50Al can be improved by sputtering an Al film and subsequent interdiffusion treatment at 600 °C for 24 h in high vacuum. In these conditions, a TiAl3 layer is formed on the surface, which exhibits good adhesion with Ti–50Al substrate and provides high oxidation resistance. Cyclic and isothermal oxidation tests show that the Ti–50Al with 3–5 μm Al film can dramatically reduce the oxidation at 900 °C in air, at which the parabolic oxidation rate constant Kp of specimen with 5 μm Al film is only about 1/15,000 of that of bare Ti–50Al. XRD and SEM results indicate that the TiAl3 layer can promote the formation of a protective Al2O3 scale on the surface as well as react with γ-TiAl to form TiAl2 during the oxidation. Simultaneously, layers of Al2O3/TiAl2/Al-enriched γ-TiAl/Ti–50Al are also formed on specimens. The TiAl2 layer thickness will decrease gradually with increasing the oxidation time. After oxidation at 900 °C for 300 h, there is a clearly discontinuous thin layer of Ti37Al53O10 compound observed in between Al2O3 and TiAl2.  相似文献   

11.
Abstract

A Fe/Cr doped SiO2 thin film which can improve the anticorrosion characteristic of materials was prepared on SUS304 stainless steel substrates by a modified hydrothermal method that constitutes a two part preparation process. The corrosion of stainless steel and the dissolution of silica from Na–Ca glass are simultaneously stimulated by an aqueous lithium bromide solution, and then a Fe/Cr doped SiO2 thin film is coated onto the substrate. The Fe/Cr doped SiO2 film was characterised by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and electron probe X-ray microanalyser. The results showed that the corrosion products and the silica are combined to form a Fe/Cr doped SiO2 thin film. Furthermore, a chemical bond is formed between the silicon coating and the metal that improves the compactness and the adhesive property of the film. The anticorrosion characteristics of the film were measured by the methods of weight loss and electrochemical potentiodynamic polarisation, indicating that the Fe/Cr doped SiO2 thin film can improve the anticorrosion performance of stainless steels effectively.  相似文献   

12.
采用常压干燥法,在Ti、SiO2、GaN、Al和Si 5种衬底上制备二氧化硅气凝胶薄膜,研究衬底类型对二氧化硅气凝胶薄膜形貌的影响。通过XPS法检测二氧化硅气凝胶薄膜与衬底之间的界面结合。采用椭偏仪结合反射光谱拟合的方法对二氧化硅气凝胶薄膜的折射率进行测量。通过原子力显微镜和场发射扫描电镜对二氧化硅气凝胶薄膜的表面及截面形貌进行观测。结果表明,二氧化硅气凝胶薄膜的形成会导致Al衬底表面Al-O中心峰产生0.07 eV的偏离,以及Ti衬底表面Ti 2p3/2中心峰0.43 eV的偏离。这表明Al衬底和Ti衬底与二氧化硅气凝胶薄膜之间形成了某种化学键。同时,折射指数测量显示,Ti衬底表面形成的二氧化硅气凝胶薄膜折射指数最低(1.17),平均孔隙率(63.8%)比硅衬底表面形成的二氧化硅气凝胶薄膜孔隙率(57.2%)要高。衬底类型对二氧化硅气凝胶薄膜形貌的影响与不同衬底的亲水性有关。由于Ti衬底亲水性最佳,更多的颗粒在Ti衬底表面形核和长大,导致其上制备的二氧化硅气凝胶薄膜具有更大的表面粗糙度,以及更大的颗粒和孔径。  相似文献   

13.
The oxidation behavior of a cast TiAl intermetallic compound and its sputtered microcrystalline film was investigated at 700–900°C in static air. At 700°C, both the cast alloy and its sputtered microcrystalline film exhibited excellent oxidation resistance. No scale spallation was observed. However, at 800–900°C, the oxidation kinetics for the cast TiAl alloy followed approximately a linear rate law, which indicates that it has poor oxidation resistance over this temperature range. The poor oxidation resistance of TiAl was due to the formation of an Al2O3+TiO2 scale which spalled extensively during cooling. Nevertheless, the sputtered, TiAl-microcrystalline film exhibited very good oxidation resistance. The oxidation kinetics followed approximately the parabolic rate law at all temperatures. Although the composition of the scales was the same as that of scales formed on the cast alloy, the scales formed on the sputtered microcrystalline-TiAl film are adherent strongly to the substrate. No scale spallation was found at 700–850°C, while a small amount of spallation was observed only at 900°C. This indicates that microcrystallization can improve the oxidation resistance of the TiAl alloy.  相似文献   

14.
The oxidation of Ni-2.05Si and Ni-4.45Si was studied in oxygen over the range of 600°–1000°C for 18 hr. The oxidation kinetics did not follow a parabolic rate law, bur rather a power law of the form (w)n=kt was followed. The value of n ranged from 2.7 to 4.9 for Ni-2.05Si and from 3.0 to 6.4 for Ni-4.45Si. The low-silicon alloy exhibited extensive internal oxidation, whereas the higher-silicon alloy did not internally oxidize. In general, NiO containing little or no silicon formed as an exterior layer on both alloys. The internal oxidation zone in Ni-2.05Si was highly irregular in thickness, and in some areas there was no internal oxidation. The higher-silicon alloy formed a continuous layer of a silicon-rich oxide. X-ray diffraction did not detect silica (amorphous), and no evidence of Ni2SiO4 was observed, although EDAX analysis suggests that small amounts of the silicate might have formed. Theaverage thickness of the internal oxidation zone was found to agree well with calculated values based on oxygen solubility and diffusivity data. No enrichment of silicon occurred in the internal oxidation zone. Calculated values, 0.033 and 0.038 (depending on the model used), of the mole fraction of silicon required for the transition from internal oxidation to continuous silica film formation agreed well with experimental data obtained in both this study and with others reported in the literature.  相似文献   

15.
The formation and evolution of zircon during oxidation of ZrB2-20 vol.% SiC ceramics under a low oxygen partial pressure of 200 Pa is studied. The formation mechanism of zircon is proposed according to experimental results and thermodynamic consideration. And the main reason to the formation of zircon can be attributed to the active oxidation of SiC. Two steps can be divided for the formation and evolution of zircon: (1) nucleation from silica glass; and (2) crystal growth into prism like particles. Furthermore, the emergence of zircon significantly improves the oxidation resistance performance.  相似文献   

16.
Amphiphilic TiO2 nanotube arrays (TiO2 NTs) were fabricated through electrochemical oxidation of Ti in solution containing H3PO4 and NaF. Scanning electron microscopic analysis shows that the as-prepared TiO2 NTs have an average pore diameter of 100 nm and a wall thickness of 15 nm. The electrochemical oxidation of Ti can be divided into four stages. In the first stage, when the potential is very low, oxygen formation and Ti dissolution are the major reactions. The second stage corresponds to a slightly higher potential, but less than 2.5 V. In this stage, the formation of TiO2 film occurs. When the potential is increased to the even higher range from 2.5 V to 6 V, the TiO2 film dissolves and nanoporous surface structure is generated. This is the third stage. Further increase of the potential enters stage four. The high potentials cause the self-organization of the nanostructure and allow the formation of well-aligned TiO2 NTs. We also found that the change in surface condition of Ti by annealing heat treatment affects the film dissolution kinetics. As compared with TiO2 thin film, the TiO2 NTs show higher photocatalytic activity on decomposing Rhodamine B. The surface of the TiO2 NTs can be wetted by both water and oil. Such an amphiphilic property comes from the capillary effect of the nanochannel structure of the TiO2 NTs. Because of the amphiphilic property and the photocatalytic activity, we conclude that the TiO2 NTs have the capability of self-cleaning.  相似文献   

17.
Amorphous B4C films were prepared by magnetron sputtering of the hot-pressed B4C target in different regimes. Hardness, intrinsic stress and film structure were investigated in dependence on the annealing temperature in air.Changes in the film structure and composition were investigated by Raman spectroscopy, confocal microscopy, and electron probe microanalysis. It has been shown that an annealing at 500 °C for 1 h leads to stress reduction, slight thickness decrease and increase of film hardness. However already at 600 °C the film oxidation proceeds very intensively with formation of the phases of boron oxide and amorphous carbon in the surface layer. The thickness of the film decreases quickly.The film oxidation is accompanied by formation of numerous carbon hillocks and redistribution of film material after annealing in furnace at 500 and especially 600 °C. The oxidation of a-B4C films as well as of the crystalline bulk samples starts in some locations and has clearly pronounced heterogeneous character that indicates heterogeneous structure of amorphous films as well as of bulk crystalline samples.Annealing in air for a long period shifts down the onset of formation of hillocks to 400 °C and changes in film morphology to 300 °C. Thus the upper temperature limit for application of a-B4C films in air depends also on the exposure time at the operation temperature.  相似文献   

18.
This study shows the influence of sodium carbonate coatings on the austenitic AISI 330 (Fe–35Ni–19Cr–1.3Si) oxidized during 48 hr at 900°C. The N2‐5 vol% H2 gaseous environment was used to simulate industrial heat treatment conditions. Silica scale formation is promoted by low oxygen‐containing gaseous environments and the high alloy silicon content. On this alloy, an amorphous silica scale is formed after the blank material oxidation. It indicates that silicon is free to diffuse in the alloy and forms a silica scale at the internal interface. On Na2CO3‐coated specimens, no silica scale is formed. Then, sodium combines with silicon to form amorphous glass particles. A comparison has been performed with results obtained on a AISI 330Cb niobium containing alloy in the same oxidizing conditions. It is then concluded that sodium carbonate coatings could only favor silica formation on niobium containing alloy due to a reaction between sodium and niobium.  相似文献   

19.
The initial oxide was CoO which formed very rapidly by outward cation diffusion. A chromium-enriched substrate layer subsequently reacted via internal oxidation to form a continuous film of Cr2O3. The formation of CoCr2O4 occurred rapidly by the reaction of CoO and Cr2O3. The presence of CoCr2O4 spinel in the oxide scale was found to offer less oxidation resistance than a layer of Cr2O3 in Co-20Cr. The large mass of CoO that existed, as well as the much more rapid rate of spinel formation compared to the rate of Cr2O3 growth, resulted in the Cr2O3 being used up faster than new Cr2O3 could form. This behavior was opposite that observed in Ni-Cr alloys. Manganese additions slightly reduced the oxidation rate as well as the solid-state growth rate of spinel. However, the spinel still formed faster than new Cr2O3, and hence the protective layer was used up. Silicon additions reduced the oxidation rate, but the layers were highly susceptible to spalling upon cooling as well as during isothermal oxidation. The scales contained both spinel and Co2SiO4. The ortho-silicate was present as isolated particles and did not form a continuous protective film per se. The reduced oxidation rate was associated with a thin inner film of Cr2O3.This work was performed at Stanford Research Institute, Menlo Park, California and was supported by the National Aeronautics and Space Administration, Contract NAS 3-11165.  相似文献   

20.
The oxidation mechanism of a Mo–Si–B alloy in two different oxygen partial pressure ranges was investigated between 820 and 1200 °C. Oxygen partial pressures between 10?19 and 10?12 bar were applied in order to suppress Mo oxide formation. Weight gain kinetics were determined resulting from simultaneous external and internal oxidation. Silica scale formation was found to lead to a droplet shape because of the high evaporation rates of B2O3 and limited wetting of the silica. In the oxygen partial pressure range 10?6–10?4 bar Mo–Si–B alloys suffer from severe degradation due to continuous formation of volatile MoO3. Catastrophic oxidation was observed as a consequence of the formation of a highly porous and non-protective silica scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号