首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
用机械合金化方法制备了Al-Ni-Ti-Zr非平衡态合金粉末。将制备的Al基非平衡态合金粉末与聚四氟乙烯(PTFE)微米粉混合压制制备了非平衡态Al-Ni-Ti-Zr/PTFE反应材料。采用X射线衍射仪(XRD)和扫描电镜(SEM)表征了球磨过程中粉末的相组成和形貌特征。利用高分辨透射电子显微镜(HRTEM)和选区电子衍射(SAED)分析了球磨后合金粉末的相结构。利用差示扫描量热法(DSC)分析了非平衡态Al/PTFE反应材料的热行为。结果表明:通过机械合金化方法可以制备出Al基非平衡态合金粉末。存在弥散在Al基非晶基体中的纳米级微晶岛状区域。在升温速率10 K·min~(-1)、空气气氛下,非平衡态Al/PTFE反应材料的反应峰值温度为495℃,放热峰积面积为1775 J·g~(-1)。连续升温条件下,非平衡态Al/PTFE反应材料的放热反应具有典型的动力学特征,通过Kissinger法计算的反应活化能E_c为309.1 kJ·mol~(-1)。  相似文献   

2.
为探究SiC质量分数、SiC粒径和Al粒径及其交互作用对PTFE/Al/SiC(PAS)反应材料力学性能的影响,通过23析因准则设计并制备了8种不同配比的PTFE/Al/SiC反应材料,并进行了准静态压缩实验和分离式霍普金森压杆实验。通过t值排序法筛选显著因子,并分析显著因子贡献率及扰动趋势。通过响应面法分析显著的交互作用。结果显示,较高的SiC质量分数对PTFE/Al/SiC材料的力学性能具有积极影响。在应变率突变的情况下,SiC粒径对材料力学响应产生了相反的扰动趋势。Al颗粒对于PAS材料系统的力学响应作用有限。强烈的因子交互作用不容忽视。在低应变率加载下,SiC质量分数/SiC粒径交互作用显著,当SiC质量分数高且粒径较小时,可以双重优化颗粒分散状态和界面结合强度,从而提高材料的力学响应。在高应变率加载下,较高SiC质量分数的PAS材料动态力学响应较高,且SiC粒径/Al粒径交互作用显著。当SiC与Al颗粒的粒径尺寸接近时,材料的动态响应值能够得到有效提高。  相似文献   

3.
Al/Ti反应多层膜中反应区传播速度的理论计算   总被引:2,自引:1,他引:1  
Al/Ti反应多层膜中反应区的传播速度是表征其特性的特征参数之一.通过定义初始单层厚度比为δ:(2b-1)δ,将Mann模型扩展为可计算任意厚度比的多层膜中反应区的传播速度.采用扩展模型计算了1A1/1Ti和3A1/1Ti反应多层膜中反应区的传播速度,计算结果与文献中的实验结果吻合.此外,讨论了预混厚度对反应传播速度的影响,得到了预混厚度与临界厚度的关系式.  相似文献   

4.
为了研究铝/氢化钛/聚四氟乙烯(Al/TiH_2/PTFE)反应材料的力学性能和反应特性,采用冷等静压和真空烧结工艺制备了四种不同TiH_2含量(0%,5%,10%,20%)的试件,同时制备了不含活性Al颗粒的TiH_2/PTFE试件作为对比组,对所有试件开展了准静态压缩实验。得到了不同TiH_2含量下试件的应力应变曲线及反应率数据,并记录下了试件的反应现象。对反应残渣进行了X射线衍射(XRD)物相分析,讨论了材料的反应机理。结果表明,TiH_2含量对材料性能和反应率影响显著,当TiH_2含量为5%时,反应率达到90%,材料强度达到最大值108MPa,比Al/PTFE类材料强度高15.1%;在TiH_2和Al含量相同时,TiH_2颗粒对PTFE基体增强作用大于Al颗粒;与Al/PTFE相比,含TiH_2的试件反应时出现了特殊的燃烧火苗现象,且该现象随TiH_2含量增加逐渐明显;材料断裂尖端高温引发Al与PTFE反应,使TiH_2活化,释放出氢,生成Ti C,能量释放充分,达到其作为高能添加剂的目的。  相似文献   

5.
6.
采用模压烧结法制备Al/Fe_2O_3/聚四氟乙烯(PTFE)反应材料。通过万能实验机、落锤仪以及高速摄影仪对不同配比及烧结温度下成型Al/Fe_2O_3/PTFE反应材料的准静态压缩力学特性及撞击感度进行了对比实验,对其发火性能进行了分析。结果显示,330℃烧结、PTFE含量为60%和70%的试件强度最高,最大真实应力达到46 MPa。350℃烧结、PTFE含量为40%的试件撞击感度最高,其特性落高H50为95 cm。Al/Fe_2O_3/PTFE反应材料在受撞击发火的条件下会出现高温金属熔渣喷射现象。  相似文献   

7.
为探究铝/聚四氟乙烯(Al/PTFE)活性材料在动态载荷下的力学行为及其点火机理,采用分离式霍普金森压杆对不同成型压力下所制备的Al/PTFE试件进行动态压缩试验。试验结果显示,当应变率为2960~5150 s~(-1)时,Al/PTFE试件在动态加载下呈现出典型的弹塑性力学行为,成型压力为50~150 MPa时,Al/PTFE试件的屈服强度和硬化模量并未表现出应变率效应。成型压力30~80 MPa时,Al/PTFE试件的速度点火阈值随成型压力的增加从28.77 m·s~(-1)缓慢升高到29.22 m·s~(-1),材料的点火延迟时间始终保持在600~700μs。当成型压力达100 MPa时,Al/PTFE试件的速度点火阈值大幅下降至26.60 m·s~(-1),且随着撞击速度的提高,活性材料的点火延迟时间由1000~1100μs降到600~700μs。结合扫描电镜结果可知,成型压力为100~150 MPa时,活性材料内部的局部大尺寸孔洞是材料速度点火阈值下降的重要因素。Al/PTFE活性材料的撞击引发点火特性主要与外部载荷和内部微观形貌有关。  相似文献   

8.
为了研究Al/Ni反应多层膜在爆炸箔起爆系统上应用的可行性,采用磁控溅射法制备了相同厚度的Cu和Al/Ni多层膜桥箔,利用SU-8光刻胶制备一定厚度的加速膛,研究了两类桥箔在相同放电回路中的沉积能量和驱动飞片的平均速度。结果表明:在储能电容电压为1 306V的放电回路中,Al/Ni多层膜的沉积能量为0.120 5~0.127 4J,相比Cu箔提高了近1倍。在电压为1 900V时,多层膜沉积能量比Cu箔提升了18%~58%;多层膜驱动的飞片平均速度高于Cu箔驱动飞片约10%。因此,Al/Ni反应多层膜能降低爆炸箔起爆系统的起爆阈值,提高其冲击起爆的可靠性。  相似文献   

9.
用磁控溅射法制备了Al/Ni、Al/Ti纳米多层薄膜。用场发射扫描电子显微镜(FESEM)、原子力显微镜(AFM)和X-射线衍射仪(XRD)对其进行了结构表征和成分分析。用差示扫描量热法(DSC)测定了纳米多层薄膜的反应放热量。结果表明: 工作压力为0.4 Pa,Al、Ni、Ti溅射功率分别为200,220,180 W条件下制备的Al/Ni、Al/Ti多层薄膜表面均匀致密,无尖锐峰,层状结构分明,组成成分分别为Al、Ni和Al、Ti单质状态; Al/Ni、Al/Ti多层薄膜放热量分别为1134.64,918.36 J·g-1,达到理论值的82.2%, 80.7%。  相似文献   

10.
为研究铝/三氧化二铁/聚四氟乙烯(Al/Fe_2O_3/PTFE)材料在准静态压缩情况下的力学性能和落锤冲击条件下的反应特性,在Al/Fe_2O_3基础上加入不同体积分数的PTFE作为粘合剂,制备了多功能结构性Al/Fe_2O_3/PTFE含能材料,并用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)对材料进行了表征。结果表明,在准静态压缩条件下,随着PTFE含量的增加,材料的压缩强度、应变硬化模量、屈服强度、密度以及最大真实应变逐渐增大。当PTFE体积分数由40%增加到80%时,复合材料的强度由16 MPa逐渐上升到87 MPa。在落锤冲击条件下,PTFE体积分数为40%和60%的Al/Fe_2O_3/PTFE复合材料均能在落锤冲击下发生剧烈爆炸和燃烧,而加入80%PTFE的复合材料在高速摄影下也仅观察到微弱的火星,反应十分微弱。随着PTFE的增加,复合材料的感度逐渐降低,特性落高分别为55,58 cm和85 cm,发火延时分别为50,100μs和200μs。40%PTFE含量的Al/Fe_2O_3/PTFE复合材料落锤冲击后产物为AlF_3、Al_2O_3、FeF_2和炭黑,证实了铝热反应的发生,FeF_2不是PTFE与Fe_2O_3反应的产物,而是由铝热反应产生的Fe与PTFE分解产物之间的化学反应产生的。  相似文献   

11.
铝-氧化铜复合薄膜化学反应性能   总被引:2,自引:4,他引:2  
用磁控溅射的方法制备了铝-氧化铜复合薄膜,采用差热分析(DSC)方法研究了其化学反应性能。研究结果表明:铝-氧化铜复合薄膜在一定的条件下,可以发生氧化还原反应,化学反应热为ΔH=-1197.5kJ.mol-1,与标准状态下的ΔH0=-1203.8kJ.mol-1十分接近。用Kissinger方法计算了第二步反应的活化能为565.146kJ.mol-1,说明在无外界刺激的情况下,薄膜材料可以稳定存在。理论推导出,反应可以达到的最高温度是2573℃(即铜的沸点),薄膜间的化学反应分两步进行。  相似文献   

12.
介电式AI/CuO复合薄膜点火桥的电爆性能   总被引:1,自引:1,他引:1  
朱朋  周翔  沈瑞琪  叶迎华  胡艳 《含能材料》2011,19(4):366-369
提出了“介电式复合薄膜点火桥”的概念,并以AI膜作电极,CuO膜作电介质层,用微细加工技术制备了介电式Al/CuO复合薄膜点火桥样品,尺寸为2000μm x2000 μm x2.6 μm,电阻值约4Ω.用60 V以上恒压源可激发点火桥发生电爆炸,电爆过程中Al/CuO复合薄膜发生了氧化还原反应,生成的单质Cu使点火桥产...  相似文献   

13.
Mg/PTFE薄膜制备与性能表征   总被引:1,自引:1,他引:0  
以镁(Mg)为可燃物质,聚四氟乙烯(PTFE)为氧化剂,利用磁控溅射和真空蒸镀两种方法,制备薄膜烟火器件,研究两种制膜工艺在性能上的差异,并对其附着力、薄膜粒度和燃速进行了测量。结果表明,磁控溅射制得的薄膜附着力为35.88mN,粒度为0.1~0.5μm,燃速为(623.9±12.5)mm.s-1,其主要性能优于真空蒸镀法制得的薄膜。  相似文献   

14.
为了研究ZrH2对Al/PTFE反应材料力学响应与毁伤性能的影响,采用冷压烧结工艺制备了Al/ZrH2/PTFE、Al/PTFE和纯PTFE三种材料的圆柱体与药型罩试件,通过准静态压缩、落锤冲击和高速撞靶实验,对三种材料的力学性能、撞击感度与撞靶毁伤效能进行了对比研究.实验结果表明:三种PTFE基材料均为弹塑性材料,都存在应变硬化效应,质量分数为10%的ZrH2能提高Al/PTFE反应材料的力学强度,使其屈服强度与失效应力分别达到22.2 Mpa与93.3 Mpa,也可降低材料撞击感度,使其点火激发能增加1.93 J,并通过活化分解参与反应保证材料能量释放水平不受影响.两种含能药型罩在撞靶过程中能发生撞击释能反应,产生穿/扩孔综合效应,形成花瓣式外翻的穿孔形式,与惰性毁伤元相比,反应材料的撞击-反应双重毁伤效应能大幅提升其扩孔能力,在Al/PTFE反应材料中引入适量添加剂ZrH2,能进一步增强材料的撞靶毁伤效能.  相似文献   

15.
为了研究Al/Ni含能薄膜的能量释放特性和规律,采用微细加工方法制备了双"V"型夹角的Al/Ni含能薄膜换能元。研究了Al/Ni含能薄膜换能元在47μF固体钽电容放电激励下的能量释放特性和规律。电爆炸测试时,用自主研制的ALG-CN1储能放电起爆仪作激励电源。电容器用47μF固体钽电容,充电电压为10~45 V。用高速摄影仪(HG-100K)观察换能元的发火过程。用数字示波器(LeCroy44Xs,4通道)记录换能元发火时电流、电压随时间的变化曲线。结果表明,Al/Ni含能薄膜换能元在电容激励下的电爆过程按照电流变化率(dI/dt)可以分为三个阶段:回路寄生电感的储能,换能元的电爆炸及等离子体加热。与相同桥型的NiCr薄膜换能元比较,所制备的Al/Ni含能薄膜换能元具有输出能量高以及电爆后产生的火花飞溅距离长的特点。发火回路的寄生电感对于换能元的起爆具有重要作用。Al/Ni含能薄膜换能元电爆炸时的输出能量主要来源于两部分:电容的输入能量和含能薄膜释放的化学能。  相似文献   

16.
活性材料PTFE/Al动态压缩性能   总被引:3,自引:2,他引:3  
采用分离式霍普金森压杆(SHPB)实验技术,研究两种不同配比的聚四氟乙烯/铝(PTFE/Al)活性材料(PA265和PA35)在高应变率下的力学压缩性能与加载反应性能,对比分析了铝含量不同对PTFE/Al活性材料的屈服强度,破坏性能,反应性能的影响.研究结果表明: 两种PTFE/Al活性材料存在应变率效应,在应变率1000~8000 s-1范围,PA265的屈服应力为32~44 MPa,PA35的屈服应力为40~55 MPa.铝含量越高,PTFE/Al的屈服强度越高; 在应变率3100~5800 s-1范围内,两种材料的破坏应力基本相同,约为143~153 MPa; PA265和PA35的临界反应应力分别为157,163 MPa; 铝粉含量不能高于35%,否则由于缺少足够的氧化剂(PTFE)而普遍出现不完全燃烧反应的现象.  相似文献   

17.
为了获得采用不同铝(Al)粒径制备而成的聚四氟乙烯/铝(PTFE/Al)活性药型罩作用双层间隔靶的毁伤威力特性,采用模压烧结成型法制备了5种不同Al粒径(10,30,70,200μm,50/70μm)的PTFE/Al活性药型罩,并开展了相应的静爆威力实验.研究结果表明:随着Al粒径从10μm增加到200μm时,活性射流对钢靶和铝靶的破孔面积、等效破裂孔直径、破孔隆起高度以及形成的破坏区域体积均呈现减小趋势,当Al粒径为10μm时破坏钢靶的毁伤参量为SSteel=0.4 CD(装药直径)、hAl=0.48 CD、VSteel=420 cm3,破坏铝靶的毁伤参量为SAl=3.8 CD、hAl=1.72 CD、VAl=2280 cm3.采用50 nm/70μm级配Al粒径的PTFE/Al活性射流对钢靶的穿孔效果显著提高,等效破裂孔直径dSteel=0.59 CD.结合实验相关数据拟合得到了活性射流对后效铝靶的爆裂毁伤效应分析模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号