首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cerium-containing SBA-15 mesoporous materials, with different Ce/Si molar ratios, were synthesized by a direct hydrothermal synthesis method and further modified by impregnation with 10, 15 and 20 wt.% Co. Characterizations by powder X-ray diffraction (XRD), N2 sorption, inductively coupled plasma (ICP) and UV-vis spectroscopy were carried out. The small-angle XRD and N2 sorption characterizations showed that these Co supported materials have less-ordered mesoporous structures with partial blockage of pores, and their specific surface area, pore volume and pore size were relatively lower than those of unsupported cerium-containing SBA-15. Spinel Co3O4 constituted the predominant cobalt phase in the prepared catalysts, and CeO2 was also detected. All the Co supported catalysts exhibited high catalytic activity in the oxidation of benzene.  相似文献   

2.
A simple solvothermal impregnation method was used to prepare ZnO nanoparticles supported on MCM-41 and SBA-15. X-ray powder diffraction, N2 adsorption–desorption, Electron Probe Micro Analysis (EPMA), and UV–vis spectroscopy were used to characterize the prepared materials. The influence of the ZnO loading of different supports on the structural characteristics and the photocatalytic activity toward degradation of methylene blue in water under ultraviolet irradiation were investigated. Wide angle X-ray diffraction and UV–vis Diffuse Reflectance confirmed the existence of ZnO phase. A much smaller influence of impregnation with ethanolic zinc salt solution on the porosity was observed for SBA-15 compared with MCM-41. Finally, the adsorption and photocatalytic activity of the ZnO/mesoporous materials depend on porous characteristics of the support materials.  相似文献   

3.
以介孔分子筛SBA-15为载体, 乙酸钴为钴源, 采用浸渍法制备了2wt%、4wt%、8wt%、10wt%和20wt% Co负载量的Co/SBA-15介孔材料。采用FT-IR、XRD、N2物理吸附、UV-Vis、SEM、TEM、H2-TPR等技术对催化材料的结构进行表征, 并将其应用于环己基过氧化氢分解反应。结果表明: 负载金属钴后, 载体的介孔结构保持完好, 随着负载量的增加, Co/SBA-15的比表面积、总孔体积和平均孔径不断减小, Co由骨架内均匀分散状态向氧化物Co3O4的形式转变。不同负载量的 Co/SBA-15在环己基过氧化氢分解反应中均表现出较好的催化性能, 其中8wt%Co/SBA-15催化环己基过氧化氢的转化率达到98.1%, 环己醇和环己酮的选择性分别为70.9%和27.9%。当负载量相对较低时, 钴的流失使催化性能下降明显, 只有当钴负载量增加到20wt%, 主要以Co3O4形式存在时, 钴的流失速率得到抑制, 连续使用五次后仍能保持较高的活性和选择性。  相似文献   

4.
Nanosized cobalt oxide particles are incorporated into SBA 15 mesoporous silica materials and are effectively used for the first time as adsorbent materials for aquatic dye pollutant removal. Cobalt is found to exist in its Co3O4 spinel structure as evident from FTIR and X-ray diffraction studies. The best weight ratio of metal loading to show excellent adsorption of methyleneblue is found to be 10 wt% Co over the support. There, Co3O4 spinel nanoparticles lie inside the pores of mesoporous silica. Further increase in the percentage of metal loading decreases the adsorption capacity which may be due to the agglomeration of nanoparticles over the silica support as evident from TEM photographs. Cobalt-doped systems of the present study, having good adsorption capacity of methyleneblue, are prepared via impregnation of cobalt nitrate over SBA 15 in aqueous medium. Here, we introduce a new SBA 15-based system for the fast removal of aquatic dye pollutants which is highly economical for industrial applications.  相似文献   

5.
Lanthanum cobaltate (LaCoO x ) nanostructured inside the MCM-41 mesoporous molecular sieve as well as in the bulk LaCoO3 perovskite were characterised by SAXS, ESR, UV–vis DRS, EXAFS and XPS techniques. The nanosized LaCoO x particles stabilised within the mesopores of MCM-41 matrix containing Co atoms in rather low average oxidation state, which is not characteristic of bulk LaCoO3 perovskites. Meanwhile, the coordination states of Co in both cases are quite similar. Also, the concentration of Co(II) cations in cobaltate nanoparticles was found to be twice as in bulk LaCoO3 material. The supported cobaltate does not form short-range ordered species of LaCoO3 in the MCM-41 matrix but presents as the highly disordered, oxygen-deficient Co oxide nanophase which is probably to be stabilised by La ions present.  相似文献   

6.
Carbon nanotubes were produced from either a template or the polymer-filled pore systems of mesoporous silicates of various structures and dimensions by heat treatment in the absence of air. Successful synthesis was done when the template molecules contained little or no oxygen. For SBA-15 material, where the structure-directing molecule used for synthesis of mesoporous silicate was polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer, no carbon nanostructures were formed. A peculiar carbon nanostructure was generated from the template for pore expanded MCM-41. To demonstrate carbon nanotube formation from polymer in the mesoporous silicates, the mesopores of MCM-41, MCM-48, and SBA-15 silicates were filled with divinyl-benzene polymer and then graphitized at 1300 K. The polymer was successfully transformed into carbon nanotubes for the MCM class silicate but not the SBA-15 silicate.  相似文献   

7.
Iron oxide nanoparticles were stabilized within the pores of mesoporous silica MCM-41 amino-functionalized by a sonochemical method. Formation of iron oxide nanoparticles inside the mesoporous channels of amino-functionalized MCM-41 was realized by wet impregnation using iron nitrate, followed by calcinations at 550 °C in air. The effect of functionalization level on structural and magnetic properties of obtained nanocomposites was studied. The resulting materials were characterized by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy and selected area electron diffraction (HRTEM and SAED), vibrating sample and superconducting quantum interface magnetometers (VSM and SQUID) and nitrogen adsorption–desorption isotherms measurements. The HRTEM images reveal that the most of the iron oxide nanoparticles were dispersed inside the mesopores of silica matrix and the pore diameter of the amino-functionalized MCM-41 matrix dictates the particle size of iron oxide nanoparticles. The obtained material possesses mesoporous structure and interesting magnetic properties. Saturation magnetization value of magnetic iron oxide nanopatricles stabilized in MCM-41 amino-functionalized by in situ sonochemical synthesis was 1.84 emu g−1. An important finding is that obtained magnetic nanocomposite materials exhibit enhanced magnetic properties than those of iron oxide/MCM-41 nanocomposite obtained by conventional method. The described method is providing a rather short preparation time and a narrow size distribution of iron oxide nanoparticles.  相似文献   

8.
《Composites Part B》2013,45(1):467-471
The effect of mesoporous silica MCM-41 and SBA-15 as a synergistic agent on the flame retardancy of intumescent flame retardant polypropylene composites (PP-IFR) were studied, and the IFR system mainly consisted of the ammonium polyphosphate (APP) as an acid source and blowing agent, pentaerythriol (PER) as a carbonization agent. The mesoporous MCM-41 and SBA-15 were incorporated into flame retardant formulation at four different concentrations (1, 3, 5, 8 wt.%) to investigate the synergism between the flame retardant materials. A synergistic effect in flame retardancy was best when a suitable amount of SBA-15 was used in combination with APP and PER.  相似文献   

9.
MCM-41 and Al–MCM-41 has been synthesized using cetyl-trimethylammonium bromide (CTAB) surfactant as template and adding the silica precursor to aqueous solutions containing CTAB. The obtained solids were calcined at 600 °C for 4 h. HPW heteropolyacid supported on the mesoporous were prepared using the incipient wetness method. The characterization of materials was performed by X-ray diffraction, Transmission Electron Microscopy, N2 adsorption, 29Si Cross Polarization–Magic Angle Spinning and 27Al MAS NMR. Results showed that the hexagonal structure is obtained in both cases. The Aluminium species are located inside an extra-framework. The impregnation reduces the surface area of the mesoporous materials especially of the Al–MCM-41 suggesting a participation of aluminium during the impregnation. HPW is well dispersed in the mesoporous materials and is located inside the pores interacting with the silanol group of the pores wall. 27Al MAS NMR measurements have showed that the impregnation causes the removal of the non-framework aluminium.  相似文献   

10.
FSM-16,MCM-41和SBA-15等具有高规则二维六角晶格的多孔硅可用不同硅源和表面活性剂合成,其孔径可达10,15或30nm,可用具有不同熔基链长的表面活性剂和膨胀剂控制。其结晶规则性随孔径的增大而降低。用层状硅土Kanemite制备的FSM-16和来自水玻璃的MCM-41,其表面阴离子度比用四甲氧基硅烷(TMOS)制备的SBA-15高得多。如将在等电点以下呈阴离子性的生物酶插入硅孔,则由于离子间的相互作用和氢键结合力,可得到结合得十分稳定的生物/无机陶瓷结合体。以此结合体为有机酸化反应的催化剂,反应的活性很高。  相似文献   

11.
有序介孔氧化硅孔道氧化锰团簇组装研究   总被引:1,自引:1,他引:0  
田高  吴超  陈文  周静  陈龙 《功能材料》2005,36(7):1080-1082
以有序介孔氧化硅MCM-41为主体材料,通过浸渍法及后续热处理工艺,在孔道中组装氧化锰的团簇粒子,并对其进行结构表征。通过XRD、HR—TEM、XPS及N2吸附表明氧化锰的团簇粒子已经成功组装到MCM-41有序孔道中。通过对不同孔径有序介孔材料的氧化锰团簇粒子的组装,表明随着孔道中组装量的增加,350nm附近光致发光强度增强,吸收边发生红移,同时1000nm附近吸收带宽化。  相似文献   

12.
Mesoporous silicas (SBA-15 and MCM-41) have been functionalized by two different methods. Using the heterogeneous route the silylating agent, 3-chloropropyltriethoxysilane, was initially immobilized onto the mesoporous silica surface to give the chlorinated mesoporous silica Cl-SBA-15 or Cl-MCM-41. In a second step a multifunctionalized N, S donor compound (2-mercaptothiazoline, MTZ) was incorporated to obtain the functionalized silicas denoted as MTZ-SBA-15-Het or MTZ-MCM-41-Het. Using the homogeneous route, the functionalization was achieved via the one step reaction of the mesoporous silica with an organic ligand containing the chelating functions, to give the modified mesoporous silicas denoted as MTZ-SBA-15-Hom or MTZ-MCM-41-Hom. The functionalized mesoporous silicas were employed as adsorbents for the regeneration of aqueous solutions contaminated with Hg (II) at room temperature. SBA-15 and MCM-41 functionalized with MTZ by the homogeneous method present good mercury adsorption values (1.10 and 0.7mmolHg (II)/g of silica, respectively). This fact suggests a better applicability of such mesoporous silica supports to extract Hg (II) from aqueous solutions. In addition, it was observed the existence of a correlation between mercury adsorption with pore size and volume since, SBA-15 with lower areas and higher pore sizes functionalized with sterically demanding ligands, show better adsorption capacities than functionalized MCM-41.  相似文献   

13.
The FSM-16, MCM-41 and SBA-15 type hexagonal mesoporous silica materials having a highly arrange in order of the 2-dimensional structure were synthesized by using different silicon sources and surfactants. In the 2-dimensional silicate framework, pore size can be uniformly controlled by the combined use of the surfactants having different alkyl chains length and swelling agents (triisopropyl benzene). Pore-diameter of FSM-16 and MCM-41 can be expanded to 100 A, SBA-15 is 150 A. Crystal regularity decreased with increasing the pore-diameter in the FSM-16 derived from Kanemite (silicon source) and MCM-41 from water glass, its anionic char-acteristics on the pore wall may be higher than SBA-15 derived from oligomeric tetramethoxysilane (TMOS) is also reported. We have successfully used FSM-16 and MCM-41 as immobilizing agents of enzyme having cationic residues under isoelectric point. The level of adsorption of enzymes in the FSM-16 and MCM-41 was relatively high, but was low in the SBA-15 support. The mechanism of enzyme adsorption in mesopore was suggested to be the ionic interactions. In aqueous solutions, horseradish peroxidase (HRP) immobilized in FSM-16 containing 89A mesopore showed the highest loaded amounts(183mg/mg FSM),then a FSM-16 of pore-diameter 30 A only loaded a litter amounts (28mg/mg FSM) on the outside surface. The catalytic activity in organic solvent is high when HRP was immobilized in FSM-16 and MCM-41, but is low in case of SBA- 15.  相似文献   

14.
在碱性条件下用组装的方法得到了高负载量,均匀分布的CoO-NiO负载型MCM-41介孔材料,并采用XRD、BET、HREM等测试手段对样品进行了分析,结果表明,CoO,NiO双组分氧化物已成功地组装进入了MCM-41的有序孔道,在CoO,NiO组装过程中,CoO,NiO含量分别为7.53wt%和5.94wt%时,介孔材料的有序结构没有遭到破坏。  相似文献   

15.
Co–Fe bimetallic samples containing 25 wt% total of metal content were prepared by incipient wetness impregnation of cobalt nitrate and iron nitrate salts over hexagonal mesoporous silica (HMS) and SBA-15 supports. Changes in the textural properties and reduction behavior were compared with monometallic cobalt/iron-based samples. The samples were characterized by N2 physisorption, X-ray diffraction (XRD), H2-temperature programmed reduction (TPR), transmission electron microscopy (TEM) and H2 chemisorption. The amount of incorporated metal was estimated by atomic absorption spectroscopy (AAS). Morphological properties revealed that after introduction of the metal to the SBA-15 support, the specific area, pore volume and pore diameter decreased to a lesser extent for bimetallic samples. XRD measurements detected the formation of Co3O4 and CoFe2O4 phases for both bimetallic samples. TPR profiles indicated similar behavior for both the bimetallic and monometallic samples. Higher temperatures were observed for the reducibility of Co–Fe/HMS as compared to Co–Fe/SBA-15. Dispersion values of the bimetallic samples were higher than Fe monometallic samples and lower than Co monometallic samples according to hydrogen chemisorption. The particle size distribution of the bimetallic samples estimated by TEM microphotographs showed a smaller fraction of larger size particles for Co–Fe/SBA-15.  相似文献   

16.
We describe three methods of post-synthesis modification of the SBA-15 mesoporous molecular sieve with titanium: impregnation with Ti(OEt)4 in an ethanolic solution, grafting with titanocene dichloride, and modification with colloidal titania. The products were characterized using X-ray diffraction (XRD) and N2 adsorption as well as Fourier-transform infrared and 29Si NMR spectroscopies. All three methods yield materials containing 1.4--4.7 wt.% titanium and with high surface areas. The absorbance at 960 cm−1 in SBA-15 modified with colloidal titania and SBA-15 grafted with titanocene indicates the formation of Ti–O bonds. All products showed significant activity towards the degradation of p-chlorophenol. UV-vis absorption spectra of SBA-15 samples modified with titanium indicate that the variation in the photocatalytic activity is governed by isolated titanium sites.  相似文献   

17.
《Advanced Powder Technology》2014,25(4):1351-1356
Mesoporous silica anchored with 25 wt.% 12-tungstophosphoric acid (H3PW12O40, HPW) were comparatively characterized on their structures and catalytic activities for benzaldehyde oxidation with H2O2. The results revealed that the mesoporous materials retained the typical hexagonal mesopores for the supports of HPW. It was found that HPW exhibited higher dispersion within MCM-41 than those within SBA-15 and other mesoporous molecular sieves. Moreover, the as-prepared materials were found to be the efficient catalysts for the green synthesis of benzoic acid. In particular, HPW/MCM-41 exhibited the best catalytic properties due to its suitable textural and structural characteristics.  相似文献   

18.
Mesoporous silica nanoparticles inhibit cellular respiration   总被引:1,自引:0,他引:1  
We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.  相似文献   

19.
Cobalt-containing SBA-15 supported gold catalysts for low-temperature CO oxidation were prepared and characterized by N2 adsorption/desorption, X-ray diffraction, transmission electron microscopy, inductively coupled plasma-atom emission spectroscopy and X-ray photoelectron spectroscopy techniques. The effects of cobalt and gold content on the catalyst activity were investigated in detail. Among them, 2% Au/40% Co/SBA-15 shows the highest activity, its complete conversion temperature for CO is at 273 K. It was believed that both the dispersion of Co3O4 and the high surface areas caused by SBA-15 contribute to the good activities of cobalt-containing SBA-15 supported gold catalysts. Furthermore, the strong metal-support interaction between gold and cobalt oxides is greatly related to the catalytic performance.  相似文献   

20.
In this work, stem of common reed ash (SCRA) is introduced as a new source of silica in the preparation of mesoporous materials. Mesoporous silicate MCM-41 nanoparticles were synthesized hydrothermally using sodium silicate prepared from SCRA as a silica source. The characterization of MCM-41was carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N\(_{2}\) adsorption/desorption (BET) and transmission electron microscopy (TEM). SEM shows that MCM-41 nanoparticles are sphere-like with size in the range of 30–50 nm with some degree of agglomeration. TEM image of the synthesized sample shows the open framework structure of MCM-41. A type IV isotherm can be observed from adsorption/desorption curves, which is the characteristic of mesoporous materials. The prepared MCM-41 nanoparticles were used as substrate to facilitate the oxidation of methanol through the modification with an electroactive species. The modification was achieved by impregnation of MCM-41 pores with \(\hbox {Ni}^{2+}\) ions (Ni-doped MCM-41). A modified carbon paste electrode (CPE) was prepared by mixing Ni-doped MCM-41 with carbon paste (NiMCM-41CPE). Cyclic voltammetry of NiMCM-41CPE shows an increment in current density of methanol oxidation in comparison with CPE in alkaline solution. Moreover, a decrease in the overpotential of methanol oxidation occurred on the surface of modified electrode. The effects of some parameters such as scan rate and methanol concentration are also investigated on the behaviour of NiMCM-41CPE. Also, the heterogeneous electron transfer rate for the catalytic reaction (k) of methanol is calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号