首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes an architecture for stable high-order /spl Sigma//spl Delta/ modulation. The architecture is based on a hybrid /spl Sigma//spl Delta/ modulator, wherein hybrid integrators replace conventional analog integrators. The hybrid integrator, which is a combination of an analog integrator and a digital integrator, offers an increased dynamic range and helps make the resulting high-order /spl Sigma//spl Delta/ modulator stable. However, the hybrid /spl Sigma//spl Delta/ modulator relies on precise matching of analog and digital paths. In this paper, a calibration technique to alleviate possible mismatch between analog and digital paths is proposed. The calibration adaptively adjusts the digital integrators so that their transfer functions match the transfer functions of corresponding analog integrators. Through behavioral-level simulations of fourth-order /spl Sigma//spl Delta/ modulators, the calibration technique is verified.  相似文献   

2.
A high-resolution multibit sigma-delta analog-to-digital converter (ADC) implemented in a 0.18-/spl mu/m CMOS technology is introduced. The circuit is targeted for an asymmetrical digital subscriber line (ADSL) central-office (CO) application . An area- and power-efficient realization of a second-order single-loop 3-bit modulator with an oversampling ratio of 96 is presented. The /spl Sigma//spl Delta/ modulator features an 85-dB dynamic range over a 300-kHz signal bandwidth. The measured power consumption of the ADC core is only 15 mW. An innovative biasing circuitry is introduced for the switched-capacitor integrators.  相似文献   

3.
A 14-bit digital-to-analog converter based on a fourth-order multibit sigma-delta modulator is described. The digital modulator is pipelined to minimize both its power dissipation and design complexity. The 6-bit output of this modulator is converted to analog using 64 current-steering cells that are continuously calibrated to a reference current. This converter achieves 85-dB dynamic range at 5-MHz signal bandwidth, with an oversampling ratio of 12. The chip was fabricated in a 0.5-/spl mu/m CMOS technology and operates from a single 2.5-V supply.  相似文献   

4.
This paper presents the design of a 2-2 cascaded continuous-time sigma-delta modulator. The cascaded modulator comprises two stages with second-order continuous-time resonator loopfilters, 4-bit quantizers, and feedback digital-to-analog converters. The digital noise cancellation filter design is determined using continuous-time to discrete-time transformation of the sigma-delta loopfilter transfer functions. The required matching between the analog and digital filter coefficients is achieved by means of simple digital calibration of the noise cancellation filter. Measurement results of a 0.18-/spl mu/m CMOS prototype chip demonstrate 67-dB dynamic range in a 10-MHz bandwidth at 8 times oversampling for a single continuous-time cascaded modulator. Two cascaded modulators in quadrature configuration provide 20-MHz aggregate bandwidth. Measured anti-alias suppression is over 50 dB for input signals in the band from 150 to 170 MHz around the sampling frequency of 160 MHz.  相似文献   

5.
A delta-sigma (/spl Delta//spl Sigma/) analog-to-digital converter featuring 68-dB dynamic range and 64-dB signal-to-noise ratio in a 1-MHz bandwidth centered at an intermediate frequency of 2 MHz with a 48-MHz sample rate is reported. A second-order continuous-time modulator employing 4-bit quantization is used to achieve this performance with 2.2 mW of power consumption from a 1.8-V supply. The modulator including references occupies 0.36 mm/sup 2/ of die area and is implemented in a 0.18-/spl mu/m five-metal single-poly digital CMOS process.  相似文献   

6.
We present a 90-dB spurious-free dynamic range sigma-delta modulator (/spl Sigma//spl Delta/M) for asymmetric digital subscriber line applications (both ADSL and ADSL+), with up to a 4.4-MS/s digital output rate. It uses a cascade (MASH) multibit architecture and has been implemented in a 2.5-V supply, 0.25-/spl mu/m CMOS process with metal-insulator-metal capacitors. The prototypes feature 78-dB dynamic range (DR) in the 30-kHz to 2.2-MHz band (ADSL+) and 85-dB DR in the 30-kHz to 1.1-MHz band (ADSL). Integral and differential nonlinearity are within /spl plusmn/0.85 and /spl plusmn/0.80 LSB/sub 14 b/, respectively. The /spl Sigma//spl Delta/ modulator and its auxiliary blocks (clock phase and reference voltage generators, and I/O buffers) dissipate 65.8 mW. Only 55 mW are dissipated in the /spl Sigma//spl Delta/ modulator.  相似文献   

7.
A 0.7-V MOSFET-only /spl Sigma//spl Delta/ modulator for voice band applications is presented. The second-order modulator is realized using a switched-opamp technique. All capacitors are realized using compensated MOS devices operated in the depletion region. A combination of parallel and series compensated depletion-mode MOSCAPs is used to obtain high area efficiency. The circuit is fabricated in a 0.18-/spl mu/m CMOS process. The only components used are standard n-MOS and p-MOS transistors with threshold voltages of approximately 400 mV. All transistors are operated within the supply voltage window of 0.7 V; voltage boosting techniques are not used. The active area is 0.082 mm/sup 2/. The modulator achieves 67-dB signal-to-noise-and-distortion ratio, 70-dB signal-to-noise ratio, and 75-dB dynamic range at 8-kHz signal bandwidth and consumes 80 /spl mu/W of power.  相似文献   

8.
This paper presents the first implementation results for a time-interleaved continuous-time /spl Delta//spl Sigma/ modulator. The derivation of the time-interleaved continuous-time /spl Delta//spl Sigma/ modulator from a discrete-time /spl Delta//spl Sigma/ modulator is presented. With various simplifications, the resulting modulator has only a single path of integrators, making it robust to DC offsets. A time-interleaved by 2 continuous-time third-order low-pass /spl Delta//spl Sigma/ modulator is designed in a 0.18-/spl mu/m CMOS technology with an oversampling ratio of 5 at sampling frequencies of 100 and 200 MHz. Experimental results show that a signal-to-noise-plus-distortion ratio (SNDR) of 57 dB and a dynamic range of 60 dB are obtained with an input bandwidth of 10 MHz, and an SNDR of 49 dB with a dynamic range of 55 dB is attained with an input bandwidth of 20 MHz. The power consumption is 101 and 103 mW, respectively.  相似文献   

9.
A single-loop third-order switched-capacitor /spl Sigma/-/spl Delta/ modulator in 90-nm standard digital CMOS technology is presented. The design is intended to minimize the power consumption in a low-voltage environment. A load-compensated OTA with rail-to-rail output swing and gain enhancement is chosen in this design, which provides higher power efficiency than the two-stage OTA. To lower the power consumption further, class-AB operation is also adapted in the OTA design. Due to the relatively low threshold voltage of the advanced technology, no clock bootstrapping circuits are needed to drive the switches and the power consumption of the digital circuits is reduced. All the capacitors are implemented using multilayer metal-wall structure, which can provide high-density capacitance. The modulator achieves 88-dB dynamic range in 20-kHz signal bandwidth with an oversampling ratio of 100. The power consumption is 140 /spl mu/W under 1-V supply voltage and the chip core size is 0.18 mm/sup 2/.  相似文献   

10.
A quadrature fourth-order, continuous-time, /spl Sigma//spl Delta/ modulator with 1.5-b quantizer and feedback digital-to-analog converter (DAC) for a universal mobile telecommunication system (UMTS) receiver chain is presented. It achieves a dynamic range of 70 dB in a 2-MHz bandwidth and the total harmonic distortion is -74 dB at full-scale input. When used in an integrated receiver for UMTS, the dynamic range of the modulator substantially reduces the need for analog automatic gain control and its tolerance of large out-of-band interference also permits the use of only first-order prefiltering. An IC including an I and Q /spl Sigma//spl Delta/ modulator, phase-locked loop, oscillator, and bandgap dissipates 11.5 mW at 1.8 V. The active area is 0.41 mm/sup 2/ in a 0.18-/spl mu/m 1-poly 5-metal CMOS technology.  相似文献   

11.
An InGaAs-InAlAs multiple-quantum-well (MQW) electroabsorption (EA) waveguide modulator fabricated on a GaAs substrate has been designed and characterized at 1.3-/spl mu/m wavelength for microwave signal transmission on an analog fibre-optic link. The modulator structure with a lattice constant 2.5% larger than that of GaAs is grown upon a 0.7-/spl mu/m-thick three-stage compositionally step-graded In/sub z/Al/sub 1-z/As relaxed buffer. The waveguide modulator exhibits a high-electrooptic slope efficiency of 0.56 V/sup -1/, a 3-dB electrical bandwidth of 20 GHz, and a large optical saturation intensity in excess of 17 mW. These high-speed optoelectronic modulators could potentially be integrated with on-chip GaAs electronic driver circuits.  相似文献   

12.
A digital-to-analog converter (DAC) composed of a cascaded digital /spl Sigma//spl Delta/ modulator and the combination of a semidigital/digital finite-impulse response (FIR) and an infinite-impulse response (IIR)-SC/RC filter is described. The architecture enables the analog linear reconstruction of 16/spl times/ oversampled digital signals. With the analog section implemented in CMOS 0.18-/spl mu/m and the digital part programmed into a field-programmable gate array (FPGA), the modulator plus reconstruction filter achieves a peak SNR of 78 dB. The spurious-free dynamic range reaches 80 dB and stays better than 73 dB within the 1.104-MHz signal band. A missing-tone-power ratio of 70 dB, demonstrated for a signal with 15-dB peak-to-average ratio, proves that the solution is suitable for ADSL-CO transmitters.  相似文献   

13.
A second-order multibit bandpass /spl Sigma//spl Delta/ modulator (BP/spl Sigma//spl Delta/M) used for the digitizing of AM/FM radio broadcasting signals at a 10.7-MHz IF is presented. The BP/spl Sigma//spl Delta/M is realized with switched-capacitor (SC) techniques and operates with a sampling frequency of 37.05 MHz. The input impulse current, required by the SC input branch, is minimized by the use of a switched buffer without deteriorating the overall system performance. The accuracy of the in-band noise shaping is ensured with two self-calibrating control systems. In a 0.18-/spl mu/m CMOS technology, the device die size is 1 mm/sup 2/ and the power consumption is 88 mW. In production, the BP/spl Sigma//spl Delta/M features at least 78-dB dynamic range and 72-dB peak SNR within a 200-kHz bandwidth (FM bandwidth). The intermodulation (IMD) is -65 dBc for two tones at -11 dBFS. The robustness of the aforementioned performance is demonstrated by the fact that it has been realized with the BP/spl Sigma//spl Delta/M embedded in the noisy on-chip environment of a complete mixed-signal FM receiver.  相似文献   

14.
This paper presents the design strategy, implementation, and experimental results of a power-efficient third-order low-pass /spl Sigma//spl Delta/ analog-to-digital converter (ADC) using a continuous-time (CT) loop filter. The loop filter has been implemented by using active RC integrators. Several power optimizations, design requirements, and performance limitations relating to circuit nonidealities in the CT modulator are presented. The influence of the low supply voltage on the various building blocks such as the amplifier as well as on the overall /spl Sigma//spl Delta/ modulator is discussed. The ADC was implemented in a 3.3-V 0.5-/spl mu/m CMOS technology with standard threshold voltages. Measurements of the low-power 1.5-V CT /spl Sigma//spl Delta/ ADC show a dynamic range and peak signal-to-noise-plus-distortion ratio of 80 and 70 dB, respectively, in a bandwidth of 25 kHz. The measured power consumption is only 135 /spl mu/W from a single 1.5-V power supply.  相似文献   

15.
A 2/spl times/40 W class D amplifier chip is realized in 0.6-/spl mu/m BCDMOS technology, integrating two delta-sigma (/spl Delta//spl Sigma/) modulators and two full H-bridge switching output stages. Analog feedback from H-bridge outputs helps achieve 67-dB power supply rejection ratio, 0.001% total harmonic distortion, and 104-dB dynamic range. The modulator clock rate is 6 MHz, but dynamically adjusted quantizer hysteresis reduces output data rate to 450 kHz, helping achieve 88% power efficiency. At AM radio frequencies, the modulator output spectrum contains a single peak, but is otherwise tone-free, unlike conventional pulse-width modulation (PWM) modulators which contain energetic tones at harmonics of the PWM clock frequency.  相似文献   

16.
High-efficiency electroabsorption waveguide modulators have been designed and fabricated using strain-compensated InAsP-GaInP multiple quantum wells at 1.32-/spl mu/m wavelength. A typical 200-/spl mu/m-long modulator exhibits a fiber-to-fiber optical insertion loss of 9 dB and an optical saturation intensity larger than 10 mW. The 3-dB electrical bandwidth is in excess of 20 GHz with a 50-/spl Omega/ load termination. When used in an analog microwave fiber-optic link without amplification, a RF link efficiency as high as -38 dB is achieved at 10 mW input optical carrier power. These analog link characteristics are the first reported using MQW electroabsorption waveguide modulators at 1.32 /spl mu/m.  相似文献   

17.
Switched-capacitor high-frequency bandpass /spl Sigma//spl Delta/ modulators could suffer from capacitor mismatch, finite opamp dc gain, and finite opamp bandwidth. These problems make the notch frequency and the quality factor of the zeros of the noise transfer function to deviate from their nominal values, strongly affecting the modulator dynamic range (DR). In order to avoid this situation, two sampled-data algorithms have been developed which allow to self-calibrate the bandpass /spl Sigma//spl Delta/ modulators. They use 3500 gate and 0.043 mm/sup 2/ area and consume power only when they are active, while, when the system is on, they are off and do not interfere with standard operation. The validity of the proposal is demonstrated by a silicon prototype in which the proposed solution allows to guarantee a 75-dB DR performance also under worst case conditions. In the particular case, it allows for the recovery of 3 dB in the SNR for the 200-kHz FM band (from 73 to 76 dB).  相似文献   

18.
A single-chip per channel codec with filters, fabricated using a single poly-Si NMOS technology, is discussed. In the encoder, the analog signal is converted to a 2.048 M samples/s digital signal by a /spl Delta/-/spl Sigma/ modulator. Filtering necessary for the sampling rate 8 k sample/s and compression by the /spl mu/255 law are performed digitally. In the decoder, the 8 k samples/s PCM is successively resampled and converted into the 2.048 M samples/s /spl Delta/-/spl Sigma/ signal, which is then decoded by a /spl Delta/-/spl Sigma/ demodulator. All the high-frequency images, which appear around multiples of 8 kHz, are removed by digital filters. The chip has continuous-signal antialiasing and smoothing filters for the 2.048 Samples/s sampling rate. It also has reference voltage generators for /spl Delta/-/spl Sigma/ modulation/demodulation. Some of the observed characteristics are given. The NMOS /spl Delta/-/spl Sigma/ modulator requires only two on-chip matched capacitors as precision components, and does not require a linear amplifier. A deliberate quantization step imbalance is introduced to allow a low sampling rate. The main band limiting for the 8 k samples/s is done by the recursive filter. This is realized with the serial-parallel pipeline multiplier (SPPM) in four-phase logic. The whole system is integrated on a 296 mil/spl times/342 mil chip.  相似文献   

19.
This paper presents the design and experimental results of a continuous-time /spl Sigma//spl Delta/ modulator for ADSL applications. Multibit nonreturn-to-zero (NRZ) DAC pulse shaping is used to reduce clock jitter sensitivity. The nonzero excess loop delay problem in conventional continuous-time /spl Sigma//spl Delta/ modulators is solved by our proposed architecture. A prototype third-order continuous-time /spl Sigma//spl Delta/ modulator with 5-bit internal quantization was realized in a 0.5-/spl mu/m double-poly triple-metal CMOS technology, with a chip area of 2.4 /spl times/ 2.4 mm/sup 2/. Experimental results show that the modulator achieves 88-dB dynamic range, 84-dB SNR, and 83-dB SNDR over a 1.1-MHz signal bandwidth with an oversampling ratio of 16, while dissipating 62 mW from a 3.3-V supply.  相似文献   

20.
A 64-MHz clock rate sigma-delta (/spl Sigma//spl Delta/) analog-to-digital converter (ADC) with -105-dB intermodulation distortion (IMD) at a 1.5-MHz signal frequency is reported. A linear replica bridge sampling network enables the ADC to achieve high linearity for high signal frequencies. Operating at an oversampling ratio of 29, a 2-1-1 cascade with a 2-b quantizer in the last stage reduces the quantization noise level well below that of the thermal noise. The measured signal-to-noise and distortion ratio (SNDR) in 1.1-MHz bandwidth is 88 dB, and the spurious-free-dynamic-range (SFDR) is 106 dB. The modulator and reference buffers occupy a 2.6-mm/sup 2/ die area and have been implemented with thick oxide devices, with minimum channel length of 0.35 /spl mu/m, in a dual-gate 0.18-/spl mu/m 1.8-V single-poly five-metal (SP5M) digital CMOS process. The power consumed by the ADC is 230 mW, including the decimation filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号