首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dietary intake of EFA and long-chain PUFA (LCPUFA) by women with (n=14) and without (n=31) gestational diabetes mellitus (GDM) was determined by repeated 24-h recalls. Women with GDM consumed significantly more energy as fat compared with women who had uncomplicated pregnancies; absolute dietary fat did not differ. Dietary n−3 LCPUFA was substantially lower than the current recommendation for pregnancy, whereas intake of saturated FA (SFA) exceeded it. We conclude that replacing dietary sources of SFA with those of EFA and LCPUFA, especially n−3 LCPUFA, would benefit the dietary fat profiles of all pregnant women.  相似文献   

2.
Lipase-catalyzed enrichment of long-chain polyunsaturated fatty acids   总被引:4,自引:13,他引:4  
Lipase hydrolysis was evaluated as a means of selectively enriching long-chain ω3 fatty acids in fish oil. Several lipases were screened for their ability to enrich total ω-3 acids or selectively enrich either docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA). The effect of enzyme concentration, degree of hydrolysis, and fatty acid composition of the feed oil was studied. Because the materials that were enriched in long-chain ω3 acids were either partial glycerides or free fatty acids, enzymatic reesterification of these materials to triglycerides by lipase catalysis was also investigated. Hydrolysis of fish oil by eitherCandida rugosa orGeotrichum candidum lipases resulted in an increase in the content of total ω3 acids from about 30% in the feed oil to 45% in the partial glycerides. The lipase fromC. rugosa was effective in selectively enriching either DHA or EPA, resulting in a change of either the DHA/EPA ratio or the EPA/DHA ratio from approximately 1:1 to 5:1. Nonselective reesterification of free fatty acids or partial glycerides that contained ω3 fatty acids could be achieved at high efficiency (approximately 95% triglycerides in the product) by using immobilizedRhizomucor miehei lipase with continuous removal of water.  相似文献   

3.
Gibson RA  Hawkes JS  Makrides M 《Lipids》2005,40(6):631-634
There have been conflicting reports regarding the effectiveness of dietary nucleotides (NT) to regulate tissue desaturases and hence stimulate accumulation of both n−6 and n−3 long-chain polyunsaturated fatty acids (LCPUFA). The aim of this study was to examine the effect of NT-supplemented cow's milk-based formula on erythrocyte phospholipid FA status in a large randomized controlled trial involving a well-nourished infant population born at term. Formula-fed infants were allocated to control formula with an innate level of NT at 10 mg/L (n=102), or formula fortified with NT at 34 mg/L (n=98). A parallel group of breastfed infants was included as a reference. Peripheral blood samples were collected by venipuncture at 7 mon of age and erythrocyte phospholipid FA determined by capillary GC. Erythrocyte LCPUFA levels did not differe between the NT-supplemented and control formula groups and were reduced in both groups compared with breastfed infants. We conclude that there is no induction of LCPUFa accumulation in erythrocyte phospholipids of term, formula-fed infants following 7 mon of NT supplementation.  相似文献   

4.
High levels of n−6 docosapentaenoic acid (22∶5n−6) have been reported in the retina of guinea pigs fed commercially-prepared grain-based rations (commercial diet). In rats and monkeys, high levels of 22∶5n−6 are an indicator of n−3 polyunsaturated fatty acid (PUFA) deficiency. We have examined the fatty acid composition of the retina and brain in guinea pigs fed a commercial diet or one of three semi-purified diets containing three different levels of n−3 PUFA. The diets comprised a diet deficient in n−3 PUFA (semi-purified diet containing safflower oil), two diets containing α-linolenic acid (standard commercial laboratory diet and semi-purified diet containing canola oil), and a diet containing α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid (DHA) (semi-purified diet containing canola oil, safflower oil, and fish oil). Two groups of guinea pigs were given the diets from day 1 to 4 wk or day 1 to 8 wk, when they were sacrificed and the retinal tissues were extracted and analyzed for PUFA content by gas-liquid chromatography. Fatty acid analyses of the retinal phospholipids of the four-week-old animals revealed that the group fed DHA (from the fish oil) had the highest level of DHA (32%), compared with values of 19 and 13% for the groups fed canola oil diet and commercial diet, respectively, and 2% for the group fed the diet deficient in n−3 PUFA. The levels of 22∶5n−6 in the retinal lipids were inversely related to the DHA values, being 0.6, 6.6, 11.4, and 20.6 for the fish oil, canola oil, commercial diet, and safflower oil diet groups, respectively. The long-chain PUFA profiles in the brain phospholipids of the four-week-old group were similar to those from the retina. The retinal PUFA values for the eight-week-old animals were similar to the four-week-old group. The safflower oil diet induced a greater deficit of DHA in retinal lipids than has been reported in rats and monkeys fed similar diets. The guinea pigs fed the commercial diet had retinal and brain PUFA patterns similar to that produced by n−3 PUFA-deficient diets in rats and monkeys. Guinea pigs fed the canola oil diet had significantly greater retinal DHA levels than those fed the commercial diet, but lower than those fed fish oil. The data suggest that the guinea pig has a reduced capacity for DHA synthesis from α-linolenic acid as compared with other mammals. Supplementation of guinea pig diets with fish oil produced high retinal and brain DHA levels and prevented the accumulation of 22∶5n−6.  相似文献   

5.
Six oils of marine, algal, and microbial origin were analyzed for stereospecific distribution of component fatty acids. The general procedure involved preparation ofsn-1,2-(2,3)-diacylglycerols by partial deacylation with ethylmagnesium bromide or pancreatic lipase, separation of X-1,3- andsn-1,2(2,3)-diacylglycerols by borate thin-layer chromatography, resolution of thesn-1,2- andsn-2,3-enantiomers by chiral phase high-performance liquid chromatography following preparation of dinitrophenylurethane derivatives, and determination of the fatty acid composition by gas chromatography. Unexpected complications arose during a stereospecific analysis of triacylglycerols containing over 33% of either 20∶4 or 22∶6 fatty acids. Thesn-1,2(2,3)-diacylglycerols made up of two long-chain polyunsaturated acids migrated with the X-1,3-diacylglycerols and required separate chiral phase resolution. Furthermore, the enzymatic method yieldedsn-1,2(2,3)-diacylglycerols, overrepresenting the polyenoic species due to their relative resistance to lipolysis, but prolonged digestion yielded correct composition for the 2-monoacylglycerols. The final positional distribution of the fatty acids was established by pooling and normalizing the data from subfractions obtained by norman- and chiral-phase separation of diacylglycerols. The molecular species of X-1,3-,sn-1,2- andsn-2,3-diacylglycerol dinitrophenylurethanes were identified by chiral-phase liquid chromatography/mass spectrometry with electrospray ionization, which demonstrated a preferential association of the paired long-chain acids with thesn-1,2- andsn-2,3-diacylglycerol isomers.  相似文献   

6.
The effects of dietary lipids on the fatty acid composition of hyaline cartilage, epiphyseal chondrocytes (EC) and matrix vesicles (MV) were evaluated in chicks. A basal semipurified diet was fed to chicks containing one of the following lipid sources at 70 g/kg: soybean oil, butter+corn oil, margarine+corn oil or menhaden oil+corn oil (MEC). Articular and epiphyseal growth cartilage were isolated from the proximal tibiotarsus; EC and MV were subsequently released by trypsin (EC 3.4.21.4) and collagenase (EC 3.4.24.3) digestion followed by ultracentrifugation. The fatty acid composition of polar lipids in chick epiphyseal cartilage at three and six weeks, as well as articular cartilage, EC and MV at eight weeks of age revealed the presence of high levels of saturated and monounsaturated fatty acids (up to 85.5%) but low levels of n−6 polyunsaturated fatty acids (PUFA) (2.6–10.2%). Mead acid (20∶3n−9,>3%) was also present in cartilage, EC and MV lipids, and was unaffected by the dietary lipid treatments. Total n−3 PUFA concentrations were the highest in cartilage, EC and MV of chicks consuming MEC. Feeding MEC lowered the levels of 20∶4n−6 in cartilage, but increased 20∶5n−3 levels. The data are consistent with those reported previously which showed that cartilage tissues are low in n−6 PUFA and that they contain 20∶3n−9. We furthermore demonstrated that the PUFA composition of cartilage can be modified by dietary lipids.  相似文献   

7.
Long-chain polyunsaturated fatty acids (LCPUFA) are important for normal visual and cortical development. In a previous study of the effects of LCPUFA on cognitive function of term infants at the age of 3 mon, we indicated that infants with evidence of reduced growth parameters at birth and impaired attention control as manifested by a late peak fixation during infant habituation assessment may benefit from LCPUFA supplementation. The aim of this prospective study was to determine whether LCPUFA supplementation and late peak fixation are related to means-end problem-solving ability in these same infants at the age of 9 mon. Term infants (58) were randomized to one of two formulas containing either LCPUFA or no LCPUFA and completed 4 mon of feeding with their formula. Cognitive function was assessed at 3 mon of age by measures of infant habituation. Infants (20 LCPUFA and 20 no-LCPUFA) completed the problem-solving assessment at 9 mon. The no-LCPUFA group had lower scores on both measures of intention and number of solutions, but neither of these differences was significant. Analysis of covariance for the effects of group and peak fixation, covaried with gestation and birth weight, showed that the number of solutions was significantly reduced in the late peak-fixation infants receiving no LCPUFA (P<0.02). Intention scores tended to be reduced in this group (P<0.06). The late peak-fixation infants who received LCPUFA had solution and intention scores similar to early peak-fixation infants receiving LCPUFA or no LCPUFA. These findings suggest that in term infants who have reduced growth parameters at birth and who show evidence of impaired attention control, information processing and problem-solving ability in infancy may be enhanced by LCPUFA supplementation. Based on a presentation at the AOCS Meeting on PUFA in Infant Nutrition: Consensus and Controversies, Barcelona, November 7–9, 1996.  相似文献   

8.
For determination of the double-bond position in polyunsaturated C24–30 fatty acids from marine organisms, methoxy derivatives were prepared. Diagnostic mass spectral fragment as well as molecular ion intensities were obtained by adjusting the ion source optics in the presence of ammonia at a lower source pressure than used conventionally. A lower detection limit was observed compared to conventional methane chemical ionization, which is a more favorable condition for capillary gas chromatography. Analysis of fatty acids from the spongeCalyx niceaensis showed the double-bond position of 8 unsaturated fatty acids, including two new ones. In addition, structural proof is provided for the presence of a new cyclopropane-containing fatty acid: 19,20-methylene-hexacosanoic acid. “Mass Spectrometry in Structural and Stereochemical Problems 262.” For preceding paper in this series, see Patterson, D.G., Haley, M.J., Midgley, J., and Djerassi, C., Org. Mass. Spectrom., submitted for publication. Recipient of a travel grant from the Queen Wilhelmina Fund, The Netherlands Cancer Foundation  相似文献   

9.
L. Amate  M. Ramírez  A. Gil 《Lipids》1999,34(8):865-871
Four sources of long-chain polyunsaturated fatty acids (LCP) differing in their chemical structure (triglycerides or phospholipids) and in their origin (tuna triglycerides, fungal triglycerides, egg phospholipids, and pig brain phospholipids) were analyzed to determine the distribution of the component fatty acids within the molecule. Lipase and phospholipase A2 hydrolysis was performed to obtain 2-monoacylglycerols and lysophospholipids, respectively, which allowed us to determine the distribution of fatty acids between the sn-2 and sn-1,3 positions of triglycerides or between the sn-1 and sn-2 position of phospholipids. Fatty acids in the LCP sources analyzed were not randomly distributed. In tuna triglycerides, half of the total amount of 22∶6n−3 was located at the sn-2 position (49.52%). In fungal triglycerides, 16∶0 and 18∶0 were esterified to the sn-1,3 (92.22% and 91.91%, respectively) 18∶1 and 18∶2 to the sn-2 position (59.77% and 62.62%, respectively), and 45% of 20∶3n−6 and only 21.64% of 20∶4n−6 were found at the sn-2 position. In the lipid sources containing phospholipids, LCP were mainly esterified to the phosphatidylethanolamine fraction. In egg phospholipids, most of 20∶4n−6 (5.50%, sn-2 vs. 0.91%, sn-1) and 22∶6n−3 (2.89 vs. 0.28%) were located at the sn-2 position. In pig brain phospholipids, 22∶6n−3 was also esterified to the sn-2 (13.20 vs. 0.27%), whereas 20∶4n−6 was distributed between the two positions (12.35 vs. 5.86%). These results show a different fatty acid composition and distribution of dietary LCP sources, which may affect the absorption, distribution, and tissue uptake of LCP, and should be taken into account when supplementing infant formulas.  相似文献   

10.
The addition of long-chain polyunsaturated fatty acids (LCP: C20, and C22) to infant formula may permit fatty acid accretion rates similar to breast-fed infants, and may have long-term outcome benefits, such as improved visual acuity and cognitive development. Although fish oil may provide a source of n-3 LCP, sources of n-6 LCP have been more difficult to identify. The present study evaluates the effects of n-3 and n-6 LCP derived from single-cell oils on liver, plasma, and brain fatty acid levels in a neonatal animal model. Newborn rat pups were suckled for 14 d by dams receiving diets containing n-3 LCP alone or combinations of n-3 LCP and increasing doses of linoleic acid (18∶2n−6) or arachidonic acid (20∶4n−6). Dietary groups received 2% n−3 LCP and 1, 2, or 5% of either 18∶2n−6 or 20∶4n−6. The 20∶4n−6 source also contained modest levels of 18∶2n−6. At the termination of the study, liver, plasma, and brain were obtained from the rat pups and the phospholipid fatty acid profiles determined. The results indicate complex interactions of n−3 and n−6 fatty acids. Groups receiving dietary 20∶4n−6 incorporated higher levels of n−6 LCP into tissues than did the groups receiving 18∶2n−6. The brain was relatively resistant to changes in fatty acid composition compared with the liver and plasma. As expected, tissue n−3 LCP levels were reciprocally related to n−6 levels. The present results document that single-cell LCP oils are bioavailable in a neonatal animal model. The use of 20∶4n−6 is a more effective means of supporting n−6 status than the use of 18∶2n−6. These results may have implications for the addition of LCP to infant formula.  相似文献   

11.
Napier JA  Sayanova O  Qi B  Lazarus CM 《Lipids》2004,39(11):1067-1075
Long-chain PUFA such as eicosapentaenoic and docosahexaenoic acids are prevalent in fish oils, and these compounds have been demonstrated to play important roles in human health and nutrition. In particular, these n−3/omega-3 long-chain PUFA provide protection from cardiovascular disease and a collection of symptoms (termed metabolic syndrome) associated with progression toward type 2 diabetes and obesity. Within Western populations, a large increase in the occurrence of these conditions represents a major public health concern. Unfortunately, both marine fish stocks and (consequentially) consumption of fish oils are in steep decline, limiting the protective role of long-chain PUFA in human health. One alternative approach to the provision of these health-beneficial FA is via their synthesis in transgenic plants. This review will describe recent advances in the production of transgenic plant oils nutritionally enhanced to produce long-chain PUFA.  相似文献   

12.
Heird WC 《Lipids》1999,34(2):207-214
The purpose of this workshop at the American Oil Chemists’ Society Symposium, “PUFA in Infant Nutrition: Consensus and Controversies”, was to enumerate the safety issues raised by the prospect of supplementing infant formulas with long-chain polyunsaturated fatty acids (LC-PUFA), to evaluate the evidence that these concerns are problematical, or theoretically problematical, and to identify the safety issues most in need of resolution. This was approached by reviewing briefly the known biological effects of LC-PUFA and how these effects might give rise to concerns about safety of LC-PUFA as components of infant formulas. Some of these issues were then discussed in more detail by invited participants, all of whom had submitted abstracts concerning the issue discussed. The pertinent aspects of all issues discussed during the workshop are summarized. In addition, since the symposium was held over 2 yr ago, an addendum summarizing additional data reported since the symposium that either support or refute issues discussed during the workshop also is included. Summary of workshop “Biological Effects and Safety Aspects of PUFA Related to Infants”, held at the AOCS symposium: PUFA in Infant Nutrition: Consensus and Controversies, November 7–9, 1996, Barcelona, Spain.  相似文献   

13.
Arne Nordøy 《Lipids》1999,34(1):S19-S22
The effects of dietary fats have been established in epidemiological and intervention studies and through relationship to risk factors for development of coronary heart disease (CHD). During a period where the impressive effects of hydroxymethylglutaryl-CoA reductase inhibitors on the mortality of CHD dominate the medical journals, it is important to realize the major effects of dietary fatty acids on a series of events included in the multifactorial disorder of CHD.  相似文献   

14.
The fatty acid profile of cardiolipin (CL) from brain and cardiac mitochondria was measured to determine whether CL isolated from these two tissue sources responded similarly to alterations in dietary fat composition. Male Wistar rats were fed 20% (w/w) diets containing 2 to 12% (w/w) 18∶2n-6 for four weeks. Despite higher baseline levels of CL 18∶2n-6 in cardiac (54±1% of total fatty acids) compared to brain (13±1%) mitochondria, CL 18∶2n-6 levels increased in proportion to dietary 18∶2 levels. The degree of change in 18∶2n-6 was comparable with both tissues showing an approximate 1.5- to 2-fold increase. The time course of changes in CL fatty acid profile was examined in a subsequent experiment in which animals were fed 20% (w/w) fat diets containing either 3 or 15% α-linoleate. Changes in cardiac CL 18∶1, 18∶2n-6, and 22∶6n-3 levels were observed within one week of feeding. While statistically significant differences were not observed in brain CL until the second week of feeding, the time course did not differ substantively from that observed in heart. The results from this study suggest that while baseline fatty acid profile of cardiac and neural CL differ, mitochondria from both tissues show comparable sensitivity to changes in dietary fat composition. Furthermore, it would appear that the turnover rate of fatty acids in CL is similar in both tissues.  相似文献   

15.
Starting three weeks before mating, 12 groups of female rats were fed different amounts of linoleic acid (18∶2n−6). Their male pups were killed when 21-days-old. Varying the dietary 18∶2n−6 content between 150 and 6200 mg/100 g food intake had the following results. Linoleic acid levels remained very low in brain, myelin, synaptosomes, and retina. In contrast, 18∶2n−6 levels increased in sciatic nerve. In heart, linoleic acid levels were high, but were not related to dietary linoleic acid intake. Levels of 18∶2n−6 were significantly increased in liver, lung, kidney, and testicle and were even higher in muscle and adipose tissue. On the other hand, in heart a constant amount of 18∶2n−6 was found at a low level of dietary 18∶2n−6. Constant levels of arachidonic acid (20∶4n−6) were reached at 150 mg/100 g diet in all nerve structures, and at 300 mg/100g diet in testicle and muscle, at 800 mg/100 g diet in kidney, and at 1200 mg/100 g diet in liver, lung, and heart. Constant adrenic acid (22∶4n−6) levels were obtained at 150, 900, and 1200 mg/100 g diet in myelin, sciatic nerve, and brain, respectively. Minimal levels were difficult to determine. In all fractions examined accumulation of docosapentaenoic acid (22∶5n−6) was the most direct and specific consequence of increasing amounts of dietary 18∶2n−6. Tissue eicosapentaenoic acid (20∶5n−3) and 22∶5n−3 levels were relatively independent of dietary 18∶2n−6 intake, except in lung, liver, and kidney. In several organs (muscle, lung, kidney, liver, heart) as well as in myelin, very low levels of dietary linoleic acid led to an increase in 20∶5n−3. Dietary requirements for 18∶2n−6 varied from 150 to 1200 mg/100 g food intake, depending on the organ and the nature of the tissue fatty acid. Therefore, the minimum dietary requirement is estimated to be about 1200 mg/100 g (i.e., the level that ensures stable and constant amounts of arachidonic acid).  相似文献   

16.
The effect of low levels of dietary arachidonic acid (20:4n-6) on Δ6 desaturation of linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3), and on Δ5 desaturation of dihomo-γ-linolenic acid (20:3n-6) were studied in liver microsomes of obese Zucker rats, in comparison with their lean littermates. Fatty acid composition of serum total lipids and of phospholipids from liver microsomes and from total heart and kidney was determined to see whether modifications of desaturation rate, if any, were reflected in the tissue fatty acid profiles. Animals fed for 12 wk on a balanced diet, containing 20:4n-6 and 18:2n-6, were compared to those fed 18:2n-6 only. The low amount of dietary 20:4n-6 greatly inhibited Δ6 desaturation of 18:2n-6 and Δ5 desaturation of 20:3n-6, whereas Δ6 desaturation of 18:3n-3 was slightly increased in obese rats. Inhibition of the biosynthesis of long-chain n-6 fatty acids by dietary arachidonic acid was only slightly reflected in the 20:4n-6 content of liver microsome phospholipids. On the contrary, the enrichment of serum total lipids and heart and kidney phospholipids in this fatty acid was pronounced, more in obese than in lean animals. Our results show that, although the desaturation rate of the n-6 fatty acids in liver microsomes was greatly decreased by the presence of arachidonic acid in the diet, the tissue phospholipid content in arachidonic acid was not depressed. The potentiality of synthesis of eicosanoids of the 2 family from this fatty acid is consequently not lower, especially in obese rats, in which certain tissues are deficient in arachidonic acid, in comparison with their lean littermates.  相似文献   

17.
Processes that combine enzymic and physical techniques have been studied for concentrating and separating eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil.Candida rugosa lipase was used in hydrolysis reactions to concentrate these acids in the glyceride fraction. By controlling the degree of hydrolysis, two products have been obtained, one enriched in total n-3(∼50%), the other enriched in DHA and depleted in EPA (DHA∼40%, EPA∼7%). The glyceride fraction from these reactions was recovered by evaporation and converted back to triglycerides by partial enzymic hydrolysis, followed by enzymic esterification. Both reactions were carried out withRhizomucor miehei lipase. DHA-depleted free fatty acids from aC. rugosa hydrolysis were fractionated to increase the EPA level (∼30%) and re-esterified to triglycerides by reaction with glycerol andR. miehei.  相似文献   

18.
During heat treatment, polyunsaturated fatty acids and specifically 18∶3n−3 can undergo geometrical isomerization. In rat tissues, 18∶3 Δ9c, 12c, 15t, one of thetrans isomers of linolenic acid, can be desaturated and elongated to givetrans isomers of eicosapentaenoic and docosahexaenoic acids. The present study was undertaken to determine whether such compounds are incorporated into brain structures that are rich in n−3 long-chain polyunsaturated fatty acids. Two fractions enriched intrans isomers of α-linolenic acid were prepared and fed to female adult rats during gestation and lactation. The pups were killed at weaning. Synaptosomes, brain microvessees and retina were shown to contain the highest levels (about 0.5% of total fatty acids) of thetrans isomer of docosahexaenoic acid (22∶6 Δ4c, 7c, 10c, 13c, 16c, 19t). This compound was also observed in myelin and sciatic nerve, but to a lesser extent (0.1% of total fatty acids). However, the ratios of 22∶6trans to 22∶6cis were similar in all the tissues studied. When the diet was deficient in α-linolenic acid, the incorporation oftrans isomers was apparently doubled. However, comparison of the ratios oftrans 18∶3n−3 tocis 18∶3n−3 in the diet revealed that thecis n−3 fatty acids were more easily desaturated and elongated to 22∶6n−3 than the correspondingtrans n−3 fatty acids. An increase in 22∶5n−6 was thus observed, as has previously been described in n−3 fatty acid deficiency. These results encourage further studies to determine whether or not incorporations of suchtrans isomers into tissues may have physiological implications. Presented in part at the 32nd International Conference on the Biochemistry of Lipids, 1991, Granada, Spain. Delta nomenclature (Δ) is used fortrans polyunsaturated fatty acids to specify the position and geometry of ethylenic bonds. Polyunsaturated fatty acids containingtrans double bonds are abbreviated giving the locations of thetrans double bonds only; e.g., 20∶5 Δ17t 20∶5 Δ5c,8c,11c,14c,17t; 22∶5 Δ19t, 22∶5 Δ7c,10c,13c,16c,19t; 22∶6 Δ19t 22∶6 Δ4c,7c,10c,13c,16c,19t.  相似文献   

19.
This study investigated the potential of dietary fats to modulate the arachidonic acid content of mouse lung phospholipids and the formation of lipoxygenase products from arachidonic and eicosapentaenoic acids. Prior to breeding, female mice were fed for five months diets with 10 wt% of either olive oil, safflower oil, fish oil, or linseed oil. The same diets were fed to the females during gestation and to the pups from day 18 to day 42 postpartum. On day 42, the phospholipids were extracted from fresh lung tissue and separated into classes [phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylinositol (Pl)] by thin-layer chromatography. Methyl esters of phospholipid fatty acids and unesterified fatty acids were analyzed by gas chromatography. At comparable dietary n-3/n-6 ratios, arachidonic acid was reduced 85 and 75% in lungs from mice fed linseed oil and fish oil, respectively, compared to lungs of safflower oil-fed mice. Dietary fats affected the proportion of arachidonic acid in phospholipids in the order: PE>PS>PS>Pl. Following incubation of homogenized lung tissue, the total amount of 12-lipoxygenase products was lowest in lungs from mice fed olive oil, and 12-hydroxyeicosatetraenoic acid was lowest in incubated lungs from mice fed linseed oil. Comparison of the amounts of lipoxygenase substrate fatty acids in the individual phospholipids with the lipoxygenase products suggested that the major substrate pool for the 12-lipoxygenase pathway in mouse lung homogenates was PC.  相似文献   

20.
Effects of dietary n−6 and n−3 fatty acids (FAs) on blood pressure (BP) and tissue phospholipid (PL) FA composition in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats were compared. Male weanling SHR and WKY were fed a fat-free semisynthetic diet supplemented with 10% (w/w) fats containing (a) 78% 18∶2n−6 (LA-rich), (b) 20% LA and 55% 18∶3n−3 (LN-rich), or (c) 11% LA and 3% LN (CON) for seven weeks. Dietary fats did not affect the BP elevation, but significantly altered the FA composition of brain, adrenal gland, renal medulla and cortex PL in SHR. The LA-rich diet increased n−6 FA while it reduced n−3 FA levels. The levels of 20∶4n−6 were not significantly different between animals fed the LA-rich and the CON diets. LN-rich diet increased the levels of n−3 FAs, while it reduced those of n−6 FAs. However, the extent of change was significantly less in SHR than in WKY. In all dietary groups, SHR, as compared to WKY, had a relatively higher level of the 2 series prostaglandin (PG) precursor, 20∶4n−6, and a relatively lower level of the 1 and 3 series PG precursors, 20∶3n−6 and 20∶5n−3. The possibility that the unbalanced eicosanoid FA precursor levels might contribute to the development of hypertension in this animal model is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号