首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the electrochromic properties of amorphous granular tungsten oxide (WO3 + δ) thin films with over-stoichiometric oxygen content (δ), using LiClO4 with propylene carbonate as an electrolyte. Different optical and electrochromic characteristics are observed with increasing δ. All the devices are electrochemically stable for more than 5000 color/bleach cycles without apparent degradation, and they have a faster response to coloration than to bleaching. WO3 + δ films with an optimized δ value show an optical modulation of 86% at a wavelength of 630 nm and the highest coloration efficiency ever reported of ~ 213 cm2/C. The δ-dependent coloration mechanism is discussed using the site saturation model. It is proposed that WO3 + δ films with the optimal δ value have favorable thickness and stoichiometry for the generation of Li+W+5 states.  相似文献   

2.
We present a comparative microscopic and spectroscopic study of the morphology and composition of WO3 and W0.95Ti0.05O3 thin films, grown by radio-frequency magnetron reactive sputtering at substrate temperatures varied from room temperature to 500 °C, using atomic force microscopy (AFM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). With increasing growth temperature, the AFM results show increase in the average crystallite size and in the surface roughness for both undoped and doped samples. The AFM data, along with the Raman results, clearly indicate that for the given set of experimental conditions, higher growth temperatures are required to obtain crystalline Ti-doped WO3 films than for WO3 films. Also, the Raman results suggest a potential phase transformation from a monoclinic WO3 structure to an orthorhombic, but more probably a tetragonal, configuration in the W0.95Ti0.05O3 thin films. This remark is based on the observed shifting, with Ti doping, to lower frequencies of the Raman peaks corresponding to W–O–W stretching modes of WO3 at 806 and 711 cm−1 to 793 and 690 cm−1, respectively. XPS data indicate that the doped material has a reduced WO3−x stoichiometry at the surface, with the presence of W6+ and W5+ oxidation states; this observation could also be related to the existence of a different structural phase of this material, corroborating with the Raman measurements.  相似文献   

3.

The electrochromic parameters such as high color contrast, quick switching time, excellent modulation of percentage transmittance accompanied by long cyclic durability and stability are of utmost importance for researchers in the electrochromism. Till present, tungsten trioxide (WO3) is the overwhelming candidate as an electrochromic material because of its excellent coloring efficiency, chemical stability and acceptable switching time. Despite, there are many possibilities to further improve the performance of tungsten oxide thin films based electrochromic devices. In this study, niobium (Nb) is doped into WO3 lattice to further enhance its functionality and overall performance. It is found that adding minimal concentrations of Nb (0.64%) in WO3 results in instant coloring and bleaching times (~?11.5 and?~?2.9 s, respectively), which outwit the switching times of pristine WO3. For Nb-doped WO3 films, considering the percentage transmission difference between bleached and colored states, the ΔT value increased 10% from 50 to 60% at 700 nm and the maximum current density value of?~?19.4 mAcm?2 has been achieved. In addition, an increase of 0.93 cm?1 path length in optical density has been found that is higher than the values of 0.74 cm?1 for only pristine WO3 films. The corresponding current density values of the Nb-doped samples were reduced to 99.4% (16.17 mAcm?2) and 98% (4.6 mAcm?2), to achieve better stability and durability. Based on the band gap study, crystal structure and surface morphology of the Nb-doped samples, the electrochromic mechanism is discussed in details.

  相似文献   

4.
Substoichiometric tungsten oxide films (WO3 − y, 0.49 ≥ y ≥ 0.15) were prepared by non-reactive thermal evaporation of WO3 powder in vacuum. The thin film composition, structure and optical properties were investigated with the purpose to establish their dependence on the deposition conditions and to prove a possible correlation between electrochromic and gasochromic colouration. An analogy in the dependencies of the maximum achievable optical density on the thin film oxygen content for gasochromically and electrochromically coloured films was observed.In-situ performed XPS measurements suggested that the main mechanism of gasochromic colouration is charge transfer between W6+ and W5+ states, i.e., similar to the electrochromic effect.  相似文献   

5.
Several WOySz tungsten oxysulphide thin films were tested as positive electrodes for lithium microbatteries. The amorphous WO1.05S2 thin film was found very promising. A capacity decrease occurred during the first few cycles, after which the films were able to intercalate reversibly up to 11 lithium ion per formula unit under high regime (75 μA/cm2). They were tested for 250 charge-discharge cycles, between 30 V and 1.2 V. X-ray photoelectron spectroscopy measurements were performed on different compounds in both intercalated (Li1WO1.05S2, Li2.7WO1.05S2 and Li3.8WO1.05S2) and partially deintercalated (Li1WO1.05S2) states in order to understand the redox processes occurring during the first dischargecharge cycle. The analysis of both the W4f and the S2p peaks has shown that the redox processes involve not only the tungsten atoms but also sulphur atoms. At the beginning of the intercalation, W6+ was first partially reduced into W5+, and then into W4+, but the important stage was the reduction of W4+ into W0. In W0, the electron binding energy was very close to that of metallic tungsten. At the same time, S 2 2- ions were partially reduced into S2- ions. But only the reduction process of tungsten atoms appeared to be totally reversible.  相似文献   

6.
In this work, pH dependent evolution of tungsten oxide (WO3) nanostructures is being reported along with physical characteristics. The synthesis was carried out via an inexpensive solvothermal cum chemical reduction route, with sodium tungstate (Na2WO4) and cetyl trimethyl ammonium bromide (C19H42NBr) as main reactants. The X-ray diffraction, together with transmission electron microscopic studies have revealed formation of regular polyhedral nanocrystalline structures and fractals as one goes from higher pH (= 5·5) to lower pH (= 2) values. The average crystallite size, as calculated through Williamson–Hall plots, was varied within 2·8–6·8 nm for different pH samples. Fourier transform infrared spectroscopy reveals in-plane bending vibration δ (W–OH), observable at ∼1630 cm − 1 and strong stretching ν (W–O–W) located at ∼814 cm − 1. Raman spectroscopy has divulged WO3 Raman active optical phonon modes positioned at ∼717 and 805 cm − 1. The thermochromic and photochromic properties of the nanoscale WO3 sample prepared at pH = 5·5, are also highlighted.  相似文献   

7.
TiO2–WO3 thin films were prepared by radio frequency (r.f.) reactive sputtering from metallic target. Structural and morphological properties of the thin films have been studied through X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The influence of the annealing on the phase composition TiO2–WO3 system was studied. The binding energies of titanium and tungsten are characteristic for Ti4+ and W6+. The influence of tungsten on anatase–rutile phase transition in TiO2 was observed. The structural modeling has been performed to account the preferred orientation in tungsten doped titanium oxide.  相似文献   

8.
The amorphous hydrous ruthenium oxide (RuO2·nH2O) thin films were deposited by a simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method. These films were characterized for their structural, surface morphological, and compositional study by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDAX) techniques. The wettability test was carried out by measuring the water contact angle. The scanning electron microscopy study showed small RuO2 particles are grouped together to form porous agglomerates. The FT-IR study confirmed the formation of hydrous ruthenium oxide films. The hydrophilic nature of ruthenium oxide (RuO2·nH2O) thin films was observed from water contact angle measurement. The presence of Ru and O in the film was confirmed by EDAX analysis. The supercapacitor behavior of these films studied in 0.5 M H2SO4 electrolyte showed maximum specific capacitance of 162 F g−1 at 10 mV s−1 scan rate. These films exhibit 80% cycling performance after 2,000 cycles. The charge–discharge studies carried at 1 mA cm−2 current density revealed the specific power of 3.5 KW kg−1 and specific energy of 29.7 W Kg−1 with 93% coulombic efficiency.  相似文献   

9.
Thin film WO3 photoanodes were prepared by reactive sputtering in Ar and O2 gas mixtures of various flow rate combinations. Furnace annealed films were nanocrystalline monoclinic WO3 with (002), (020) and (200) plane orientations. Water oxidation in 0.33 M H2SO4 electrolyte under simulated solar illumination showed that photoanodes deposited in highest Ar and O2 flow rate combinations exhibited highest photocurrent of 4.1 mA cm−2 (at 1.3 V vs Ag/AgCl) compared to 3–3.8 mA cm−2 for photoanodes deposited in lower flow rate combinations. The higher photocurrents were ascribed to lower bulk resistivity and charge transfer resistance at the WO3/electrolyte interface. These photoanodes consisted of randomly oriented (002), (020) and (200) planes in contrast to the preferentially orientated (002) and (200) planes of photoanodes which were highly resistive with poorer photocurrent responses. These results were interpreted in terms of the effects of Ar:O2 flow rate combinations on the distribution of oxygen vacancies and formation of crystallographic shear planes in the sputtered films.  相似文献   

10.
Electrochromic tungsten oxide thin films were prepared by using an aqueous solution of Na2WO4·2H2O and dimethyl sulfate. Various techniques were used for the characterization of the films such as X-ray diffraction, cyclic voltammetry, SEM analysis and VIS-spectroscopy. The thin film durability was tested in an aqueous solution of LiClO4 (0.1 mol/dm3) for about 7000 cycles followed by cyclic voltammetry. No significant changes in the cyclic voltammograms were found, thus proving the high durability of the films.The optical transmittance spectra of coloured and bleached states showed significant change in the transmittance, which makes these films favorable for electrochromic devices.  相似文献   

11.
Electrochemical insertion by a set of different ions (H+, Li+, Na+ and K+) into a tungsten oxide thin film was studied by photoelectron spectroscopy. The tungsten oxide thin film incorporating Si atoms was produced from a silicotungstic acid (SiWA) solution. The insertion compounds were measured by core level photoelectron spectroscopy (W 4f) and the contributions from ions of different oxidation states could be monitored simultaneously. SiWA films having a W6+/Wtot ratio of 0.7 could be prepared for all cations investigated. At this ratio the W 4f core level electronic structure for H+ inserted SiWA films was found to be very similar to that of H+ inserted into crystalline monoclinic WO3 in that both films show the presence of W4+, W5+ and W6+. The measurements on Li+ inserted SiWA films indicate an electronic structure very similar to that of the smaller (H+) ion. The K+ inserted film displays a similar behaviour although the existence of W4+ was difficult to ascertain. Interestingly, a different behaviour was observed for the Na+ inserted compound. In this case, the binding energy shift of the W 4f peak upon reduction is clearly different from that obtained for the other insertion materials.  相似文献   

12.
Present work introduces a novel Ca3WO6 microwave dielectric ceramic with a complex perovskite structure. The Ca3WO6 ceramic was prepared by solid state reaction method and can be well densified at above 1,260 °C for 2 h in air. All the XRD patterns can be fully indexed as a single-phase monoclinic structure (space group P21/n). The sharp Raman vibration mode at 810 cm−1 suggests the long range order in the Ca3WO6 structure. The best microwave dielectric properties can be obtained in ceramic sample sintered at 1,275 °C for 2 h with a permittivity ~15.3, a Qf value ~29,200 GHz and a TCF value about −30 ppm/°C. Applying the oxide additivity rule, the calculated permittivity agrees well with the measured value. This kind of ceramic might have some potential value for microwave application for its good microwave dielectric behavior. The (Ca1/2W1/2) complex cations holding the site of Ti4+ in perovskite structure would introduce many new systems in complex perovskite compounds in the future.  相似文献   

13.
Mo0.5W0.5Se2 thin films were obtained by using relative simple chemical route at room temperature. Various preparative conditions of the thin films are outlined. The films were characterized by X-ray diffraction, scanning electron microscope, optical and electrical properties. The grown films were found to be uniform, well adherent to substrate and brown in color. The X-ray diffraction pattern shows that thin films have a hexagonal phase. Optical properties show a direct band gap nature with band gap energy 1.44 eV and having specific electrical conductivity in the order of 10−5 (Ωcm)−1.  相似文献   

14.
Samples of nominal compositions, Cs0.25Nb y W1−y O3 and Cs0.3Nb y W1−y O3 with 0.0 ≤ y ≤ 0.25 and 0.0 ≤ y ≤ 0.3 were synthesized using appropriate amounts of Cs2WO4, WO3 and WO2 in evacuated and closed silica glass tubes at 800 °C. The polycrystalline products contain hexagonal shaped crystals of up to 15 μm diameter as long as y ≤ 0.15. X-ray powder patterns of the samples reveal the formation of hexagonal tungsten bronze (HTB-I) type phase with y < 0.1. A mixture of HTB-I and an analogous less reduced hexagonal tungsten bronze (HTB-II) type phase is seen when y ≥ 0.1. HTB-II content increases with increasing y, revealing close similarity to bronzoid type phases when y = x. Results of SEM/EDX analysis also support a partial substitution of tungsten by niobium in the HTB-I type phase. Infrared absorption and optical reflectivity data shows the effect of increasing amount of non-metallic phase for y > 0.1 and the effect of counterdoping by Nb5+/W5+ substitution in the metallic HTB-I type phase for y ≤ 0.1, respectively. Reinvestigations in the system Rb0.3Nb y W1−y O3 (0.0 ≤ y ≤ 0.175) show similar results with increasing content of HTB-II type phase related with y.  相似文献   

15.
Nanocrystalline Co3O4 thin films were prepared on glass substrates by using sol–gel spin coating technique. The effect of annealing temperature (400–700 °C) on structural, morphological, electrical and optical properties of Co3O4 thin films were studied by X-ray diffraction (XRD), Scanning Electron Microscopy, Electrical conductivity and UV–visible Spectroscopy. XRD measurements show that all the films are nanocrystallized in the cubic spinel structure and present a random orientation. The crystallite size increases with increasing annealing temperature (53–69 nm). These modifications influence the optical properties. The morphology of the sol–gel derived Co3O4 shows nanocrystalline grains with some overgrown clusters and it varies with annealing temperature. The optical band gap has been determined from the absorption coefficient. We found that the optical band gap energy decreases from 2.58 to 2.07 eV with increasing annealing temperature between 400 and 700 °C. These mean that the optical quality of Co3O4 films is improved by annealing. The dc electrical conductivity of Co3O4 thin films were increased from 10−4 to 10−2 (Ω cm)−1 with increase in annealing temperature. The electron carrier concentration (n) and mobility (μ) of Co3O4 films annealed at 400–700 °C were estimated to be of the order of 2.4–4.5 × 1019 cm−3 and 5.2–7.0 × 10−5 cm2 V−1 s−1 respectively. It is observed that Co3O4 thin film annealing at 700 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.  相似文献   

16.
Undoped lead phosphate glass of the composition PbO 50 mol%, P2O5 50 mol% together with samples of the same ratio doped with various WO3 contents were prepared. UV–Visible spectroscopic studies were measured out in the range 200–1100 nm before and after successive gamma irradiation. Infrared and Raman spectroscopic measurements were carried out for the undoped and WO3-doped samples. All the prepared samples are observed to absorb strongly in the UV region due to the combined contributions of absorption from trace iron impurities and sharing of lead Pb2+ ions. The bluish WO3-doped lead phosphate samples reveal visible absorption bands which are attributed to the existence of pentavalent W5+ ions. ESR measurements support this assumption. Infrared and Raman spectra indicate the presence of metaphosphate chains as the structural main building units and the possible presence of appreciable pentavalent (W5+O3) of W5+ units together with hexavalent WO4 units. Gamma irradiation reveal the shielding behaviour of the studied tungsten-doped lead phosphate glasses due to the combined presence of heavy Pb2+ ions and tungsten ions.  相似文献   

17.
Preparation of layered type semiconductor Mo0.5W0.5S2 thin films has been successfully done by using chemical bath deposition method. Objective of the studies are related to structural, optical, morphological and electrical properties of the thin films. The preparation method is based on the reaction between tartarate complex of Mo and W with thiourea in an aqueous alkaline medium at 363 K. X-Ray diffraction reveals a polycrystalline film composed of both MoS2 and WS2 phases. The optical study shows that the band gap of the film is 1.6 eV. Electrical conductivity is high which is in the order of 10−3–10−2 (Ώ cm)−1.  相似文献   

18.
In this study, polycrystalline AgGaS2 thin films were deposited by the sequential evaporation of AgGaS2 and Ag sources with thermal evaporation technique. Thermal treatment in nitrogen atmosphere for 5 min up to 700 °C was applied to the deposited thin films and that resulted in the mono phase AgGaS2 thin films without the participation of any other minor phase. Structural and compositional analyses showed the structure of the films completely changes with annealing process. The measurements of transmittance and reflectance allowed us to calculate the band gap of films lying in 2.65 and 2.79 eV depending on annealing temperature. The changes in the structure with annealing process also modify the electrical properties of the films. The resistivity of the samples varied in between 2 × 103 and 9 × 106 (Ω-cm). The room temperature mobility depending on the increasing annealing temperature was in the range of 6.7–37 (cm2 V−1 s−1) with the changes in carrier concentrations lying in 5.7 × 1013–2.5 × 1010 cm−3. Mobility-temperature dependence was also analyzed to determine the scattering mechanisms in the studied temperature range with annealing. The variations in the electrical parameters of the films were discussed in terms of their structural changes.  相似文献   

19.
Bi4-xNdxTi3O12 (BNT-x, x = 0, 0.25, 0.50, 0.75 and 1.0) thin films were prepared on Pt/Ti/SiO2/Si substrates by a sol–gel method. The microstructure, ferroelectric and dielectric properties of BNT-x thin films were investigated. The single-phase BNT-x thin films were obtained. With increasing Nd content, the preferred orientation changed from random to (117) and surface morphologies changed from the mixture of rod- and plate-like grains to rod-like grains. The Nd substitution improved the ferroelectric and dielectric properties of BTO films. BNT-x films showed better electrical properties at x = 0.50—1.0. BNT-0.75 film exhibited the best electrical properties with remanent polarization (2P r) of 26.6 μC/cm2, dielectric constant (ε r) of 366 (at 1 MHz), dielectric loss (tanδ) of 0.034 (at 1 MHz), leakage current density (J) of ±3.0 × 10−6 A/cm2 (at ± 5 V) and fatigue-free characteristics.  相似文献   

20.
This article describes the development of a method to measure the normal-to-plane thermal conductivity of a very thin electrically insulating film on a substrate. In this method, a metal film, which is deposited on the thin insulating films, is Joule heated periodically, and the ac-temperature response at the center of the metal film surface is measured by a thermo-reflectance technique. The one-dimensional thermal conduction equation of the metal/film/substrate system was solved analytically, and a simple approximate equation was derived. The thermal conductivities of the thermally oxidized SiO2 films obtained in this study agreed with those of VAMAS TWA23 within ± 4%. In this study, an attempt was made to estimate the interfacial thermal resistance between the thermally oxidized SiO2 film and the silicon wafer. The difference between the apparent thermal resistances of the thermally oxidized SiO2 film with the gold film deposited by two different methods was examined. It was concluded that rf-sputtering produces a significant thermal resistance ((20 ± 4.5) × 10−9 m2·K·W−1) between the gold film and the thermally oxidized SiO2 film, but evaporation provides no significant interfacial thermal resistance (less than ± 4.5 × 10−9 m2·K·W−1). The apparent interfacial thermal resistances between the thermally oxidized SiO2 film and the silicon wafer were found to scatter significantly (± 9 × 10−9 m2·K·W−1) around a very small thermal resistance (less than ± 4.5 × 10−9 m2·K·W−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号