首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
罗仑博  王媛  翟恩地 《太阳能学报》2019,40(11):3258-3264
基于江苏某海上风电项目2 m直径钢管桩水平单调加载试验,实测获得桩身弯矩、桩身位移随深度变化规律——桩身最大弯矩位于泥面以下3倍桩径深度附近,桩身弯矩与位移零值点随水平荷载增加逐渐下移。基于现场试验推算浅层土反力随位移变化关系,揭示分层土中土反力受土层厚度与地基反力系数的综合影响。综合m法和双曲线法p-y曲线,考虑分层土的地基反力系数、弹簧节点影响范围、深度及桩径等因素对地基土初始刚度的影响,在此基础上该文提出双曲线法,并与m法、API规范法、双曲线法等进行比较。结果表明:m法只考虑了线弹性变形,在计算桩基的水平小变形时与实测结果接近;API规范p-y曲线计算结果偏于保守;双曲线法p-y曲线计算水平位移值偏小,结果偏于危险;该文提出的双曲线法计算结果与实测值吻合良好。  相似文献   

2.
胡中波  翟恩地  罗仑博 《太阳能学报》2019,40(12):3571-3577
基于福建某近海风电项目2根钢管桩基础水平静载试验,获得桩身弯矩和位移随深度变化规律:桩身最大弯矩位于泥面以下1D(桩径)深度附近,桩身位移在泥面下约7 m达到零值。通过实测p-y(地基土水平抗力-桩水平位移)曲线,讨论中粗砂地层的初始刚度和极限抗力随深度变化规律,并分别给出考虑桩径、埋深影响的修正公式,并在此基础上提出修正双曲线模型计算砂土的p-y曲线,并与API(American Petroleum Institute)规范及双曲线模型进行比较。结果表明API规范高估了p-y曲线的初始刚度而低估了极限抗力,计算结果在桩基变位较小时偏于危险,在桩基变位较大时偏于安全;双曲线模型同时低估了初始刚度和极限抗力,计算结果偏于保守;此外,对于泥面以下0.5D范围的中粗砂地层,各类方法均低估了p-y曲线的初始刚度和极限抗力,建议适当增加。  相似文献   

3.
海上风电大直径管桩在服役期间常遭受水平冲击荷载工况。现行API规范不符合大直径管桩水平冲击荷载工况,其p-y曲线需要复核。为保证结果的可靠性,依托福建平潭某海上风电建设项目,开展海上大直径钢管桩现场水平加载试验,对桩基础在复杂地层条件下受水平荷载的工况进行了p-y曲线分析,研究结果可为水平受荷工况大直径钢管桩的设计和施工提供参考。  相似文献   

4.
单桩基础是海上风电基础中应用范围较广的基础形式,目前工程中在分析桩土相互作用及单桩位移时常采用API规范推荐的p-y曲线模型进行计算。随着桩土理论的不断发展和进步,现有的API规范推荐的p-y曲线模型在应用于大直径桩的分析和计算时,其结果低估了不同深度处土体的极限土抗力,高估了初始地基反力模量,因而降低了计算结果的准确性。该文针对该问题,分析了现有p-y曲线法中影响极限土抗力和初始地基反力模量的因素;通过建立桩土相互作用的有限元数值模型,对不同桩径和土体深度的计算模型进行分析和数据回归,引入修正系数来考虑大直径桩的尺寸效应,并讨论了不同因素影响指数的变化规律,最终建立了适用于大直径单桩基础的修正p-y曲线模型。最后通过与模型试验和现场试验的结果对比,修正后的模型对极限土抗力和初始地基反力模量的计算更加符合实际情况,从而验证了修正p-y曲线模型的可靠性与合理性。  相似文献   

5.
将华能灌云海上风电场试桩试验实测数据与4种基于CPT测试的黏土p-y曲线方法的理论计算结果进行对比。对比显示:传统的p-y曲线因其原始试验的局限性会显著低估桩侧土体的极限土反力,使桩基设计偏于保守;而双曲线型的p-y曲线虽然高估桩侧土反力,但是对桩侧土体初始刚度预测较准。根据以上对比分析结果,采用Matlab回归函数进行模型集成,将传统型p-y曲线模型与双曲线型p-y曲线模型结合,提出一种基于CPT测试的适用于黏土的复合p-y曲线模型。最后通过与已有工程实例实测数据进行对比,验证了新提出方法的可靠性。该方法可为黏土中水平受荷桩基计算提供新途径。  相似文献   

6.
孙希  黄维平 《太阳能学报》2016,37(1):216-221
对砂土的小直径桩实测p-y(水平抗力-水平位移)曲线进行分析计算。分析桩土参数对实测p-y曲线的影响,并选用合理的标准化参数对各p-y曲线进行归一化,选用双曲线拟合归一化曲线。分析目前土体极限抗力的研究成果,选取合理的双曲线模型参数。由双曲线模型推得大直径(4~6 m)单桩的实测p-y曲线,通过软件ABAQUS和SACS对实例进行对比分析,证明双曲线模型以及参数选取的有效性及适用性。由双曲线模型得到的大直径p-y曲线形式简单,同时计算过程较简化。通过参数的选取,可充分考虑桩径和施工效应等因素的影响,普适性较好,可广泛用于工程中水平受载海上风电基础大直径桩的p-y曲线分析。  相似文献   

7.
  [目的]  p-y曲线法在计算钢管桩水平位移时的桩身受力状态有明显优势。  [方法]  开发了一套新的p-y曲线自动提取程序,根据提取的剪力用三次样条曲线进行拟合,然后一次求导得到p。  [结果]  研究表明:该方法提高计算精度的同时,降低了使用者的经验要求,方便工程推广使用。  [结论]  针对桂山海上风电场项目的大直径单桩基础现场试桩结果进行三维有限元分析,验证了该提取方法在桩土相互作用分析中的可靠性。  相似文献   

8.
鉴于海上风机整体结构自身的频率较低使基础设计往往受其整体频率的控制,以江苏省海上某风电场工程为例,选取m法、p-y曲线法及DP模型实体有限元方法3种桩土相互作用模拟方法,分析了不同方法对海上风机整体结构模态分析产生的影响。结果表明,3种方法计算的频率相差较小,结果可靠。  相似文献   

9.
[目的]为了能够更加准确、快捷地预测海上大直径单桩的自沉深度,降低施工风险,分别采用了基于设计参数的方法和基于CPT原位测试的方法进行分析计算并根据现场实际施工数据进行初步分析。[方法]通过API推荐的桩基承载原理,利用现场沉桩数据,结合误差分析,将理论计算结果与实际沉桩数据进行比较,修正设计输入参数。[结果]分析结果表明:计算粘土的自沉与溜桩分析过程中,折减强度系数Sr的不同,对沉桩预测差异很大;同时,自沉过程与溜桩过程折减强度系数Sr的选取不同。[结论]通过对比分析,得到了广东沿海海域粘土强度折减系数Sr取值范围,可以为后面海上沉桩作业提供设计参考,此外,研究发现利用CPT数据能够更好地预测自沉和溜桩现象。  相似文献   

10.
福建莆田南日岛海上风电项目风机基础钢管桩直径大、承载力要求高、入岩深度大,需要在工程区域内进行钢管桩承载力试验。本工程风机基础钢管桩需要采用2种桩型:端承摩擦桩和摩擦端承桩,试桩工程拟对两种桩型各做一组试验。通过对锚桩法和自平衡法两种静载荷试验方法进行分析比较,选择了对地质条件适应性较好的锚桩法,可为今后类似的工程提供借鉴与参考。  相似文献   

11.
开展近海风力机水平受荷单桩的现场试验,实测得到桩顶荷载-位移关系、桩身变形和弯矩,揭示水平荷载作用下桩-土相互作用规律。考虑地基土埋深效应来修正初始地基反力模量,提出适用于砂土和黏土中水平受荷桩承载特性的简化p-y曲线模型,并与实测值和API规范计算值进行对比,最后对极限抗力系数和形状参数进行敏感性分析。结果表明:简化方法计算的桩顶位移和桩身最大弯矩与实测值相对误差分别为15.6%和3.2%,提出的简化方法能提高计算精度;极限抗力系数和形状参数对水平受荷桩内力和变形均较为敏感,以变形控制为设计原则的单桩基础建议取较大值。  相似文献   

12.
海上风力机结构体系长期经受波浪、风等水平循环荷载的作用,循环荷载的长期作用会引起桩周地基土体产生棘轮效应及形成密实沉陷区,研究长期循环荷载效应对风力机单桩承载特性的影响规律具有重要的工程意义。基于有限差分软件FLAC3D计算平台,建立风力机单桩的数值计算模型,与既有桩基试验开展对比验证模型的有效性;随后引入长期循环荷载效应引起的桩周密实沉陷简化模型,开展海上风力机大直径单桩的承载性能对比研究,探讨考虑与未考虑密实沉陷区时桩基的变形、弯矩、p-y(土体抗力-桩基水平位移)曲线的差异,分析长期循环荷载效应对桩基承载特性的影响规律。结果表明,密实沉陷对单桩的刚性转动点位置基本无影响,但在桩基埋置的浅层区域,桩周密实沉陷区对桩基水平位移影响显著,且引起桩基弯矩发生突变。  相似文献   

13.
为研究地震峰值加速度和钢管桩径厚比对高桩码头钢管桩塑性区及损伤特性的影响规律,选取径厚比分别为64、82、100的三种钢管桩,采用p-y土弹簧模拟桩土相互作用,分析了三种钢管桩全直桩码头结构在不同地震峰值加速度下的动力时程,并根据桩身截面的最大应变判别其塑性区域及地震损伤水平。计算结果表明,钢管桩塑性区出现在桩顶和淤泥质粉质粘土层中,桩顶塑性区长度在0~2.09 m范围内,土内塑性区处于泥面以下3.2~8.7m的范围内。随着地震峰值加速度的增加,钢管桩塑性区长度和损伤程度呈上升趋势,在三种钢管桩中,径厚比为100的钢管桩塑性区长度和损伤程度相对较小。  相似文献   

14.
李威  周文杰 《太阳能学报》2022,43(6):219-225
海上风电属变形敏感结构,而导管架基础海上风电结构在服役期内下部桩基础会承受较大竖向循环荷载。在竖向受荷桩基的分析与计算中,采用ABAQUS分析桩端影响区域,依据动三轴实验中砂土的应变累积特性,提出一种新型Q-z模型。与传统Q-z模型比较,该模型能通过不同参数取值,模拟在轴向循环荷载下桩端的位移累积。结合有限元软件COMSOL进行二次开发,模拟单桩轴向循环加载工况,与离心机实验进行对比,验证了该Q-z模型的合理性。在数值计算中分别采用美国石油学会(API)规范系列桩土相互作用模型(p-y)、可考虑桩-土界面强度和刚度循环弱化效应的弹塑性t-z模型,可描述桩端位移累积的新型Q-z模型,分析海上升压站在循环荷载下的响应规律,为海上升压站设计提供相应的建议。  相似文献   

15.
  [目的]  在海上风电工程中,为进一步优化桩基设计,同时为大范围沉桩作业提供施工参数资料,必须要进行海上试桩。近年来,随着海上风电机组装机容量不断增大,且海上风电场离岸越来越远,为满足设计承载要求,海上风机基础桩基设计长度不断增加。与普通试桩相比,海上超长钢管桩在试桩过程中存在诸多不同。为保证海上超长钢管桩试桩达到预定目标,  [方法]  作者对海上试桩中的关键技术进行了深入讨论。首先讨论了海上超长钢管桩试桩的试验项目设置,  [结果]  明确了合理的试桩顺序;其次对海上超长钢管桩试桩中基准桩设置、反力装置、沉桩施工、冲刷监测、试桩保护和桩身传感器保护等关键技术进行详细分析,  [结论]  对今后海上超长钢管桩试桩工程有指导意义;最后对海上试桩工程未来的发展进行展望及总结。  相似文献   

16.
陈静  田德  王伟龙  罗涛  邓英 《太阳能学报》2019,40(9):2411-2417
以极端条件下的某5 MW单桩式海上风电机组为研究对象,考虑局部冲刷作用,采用p-y曲线法建立有限元模型,通过自由振动分析,计算考虑土壤材料阻尼的支撑结构整体结构阻尼,结合耦合弹簧模型建立的基础模型,获得机组结构响应。结果表明:基于p-y曲线法建立的有限元模型模拟桩基础与土壤的相互作用是可靠的,相比未考虑局部冲刷作用,土壤阻尼由0.389%降低至0.138%,进而降低了土壤材料阻尼对结构响应的影响。在设计过程中,需考虑土壤材料阻尼对局部冲刷作用下结构响应的影响。  相似文献   

17.
针对地震作用下边坡稳定分析方法之间的差异及其适用情况尚不明确的问题,以某三级均质土坡为例,基于Quake/w、Geo Studio、PLAXIS以及FLAC等软件,利用拟静力法、Newmark滑块分析法、动力有限元时程分析法、动力有限元强度折减法及有限差分强度折减法计算出安全系数,对比了5种方法的异同。结果表明,采用拟静力法获得的边坡抗震稳定性偏于安全;Newmark滑块分析法、动力有限元时程分析法计算的安全系数基本相同;动力有限元与有限差分强度折减法计算所得的安全系数相近,但在不同折减系数下计算的监测点位移相差较大。  相似文献   

18.
王慧英  路军富  赵冉 《水电能源科学》2013,31(3):106-108,256
针对我国大型深水港口工程及跨海大桥工程中大直径钢管桩的承载力特性研究较少的问题,以湛江某集装箱码头中的大直径钢管测试桩A为例,通过对数值计算与现场静载试验数据的对比分析,确定了ABAQUS有限元软件对大直径钢管桩承载力数值模拟的有效性,表明该软件能对大直径钢管桩承载力特性进行定性和定量分析,继而分析了竖向荷载作用下大直径钢管桩尺度(桩径和桩长)对其承载力特性的影响。结果表明,随钢管桩桩径的增大,其极限承载力和桩侧摩阻力随之提高,桩端阻力随之减小,桩端沉降与桩顶沉降之比亦逐渐减小;随桩长的增加,钢管桩的极限承载力和桩侧摩阻力均显著提高,但桩端阻力与桩顶荷载之比逐渐减小,因此在设计中应选取合适的桩长并以桩身变形作为控制参数。  相似文献   

19.
田德  陈静  陶立壮 《太阳能学报》2019,40(10):2886-2891
以NREL 5 MW单桩式海上风电机组为研究对象,基于p-y曲线法与土壤阻尼曲线建立有限元模型,通过自由振动分析与时域仿真分析,分别获得基于土壤阻尼曲线的海上风电机组结构响应。结果表明:支撑结构土壤阻尼对土壤剪应变较为敏感,且在自由振动分析结果额定条件下达到最大值1.259%;相比塔顶位移与转角,泥面位移与转角最大值对土壤阻尼响应更为敏感。在设计过程中,考虑土壤材料阻尼时,可选择土壤阻尼曲线用于土壤建模。  相似文献   

20.
刘超  孙文  张积乐 《太阳能学报》2016,37(2):316-321
针对海上风电场单桩基础结构的冲刷问题进行物理模型试验研究,采用7个直径分别为0.025、0.050、0.075、0.100、0.400、0.700、1.000 m的模型,试验流速根据实验室条件分别取0.1、0.3、0.5和0.6 m/s。试验结果显示,桩的冲刷深度与桩径的关系呈二次抛物线型。冲刷深度与桩径的比值随桩径的增大呈二次抛物线衰减,无量纲冲刷深度随流速的增大也呈二次抛物线增大,与DNV规范的推荐计算方法吻合。冲刷坑的大小与冲刷深度的比值基本为常数,与现行规范的计算方法吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号