首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用Gleeble-1500型热模拟机,在应变速率为0.01~1s-1、变形温度为593~653K的变形条件下,对AZ80A镁合金进行等温压缩试验.结果表明:在较高变形温度或者较低应变速率时,AZ80A镁合金更易发生动态再结晶;根据热模拟试验所得的流动应力曲线确定了AZ80A镁合金的动态再结晶临界条件,并通过动力学分析并建立了该合金的动态再结晶模型,可为该合金组织模拟技术提供理论依据.  相似文献   

2.
在变形温度为260~410℃、应变速率为0.001~10 s~(-1)条件下,对AZ80镁合金进行热拉伸实验,测试AZ80镁合金的真应力-真应变曲线;依据Arrhenius本构方程形式,确定AZ80镁合金热变形过程的本构关系模型;提出一种新的加工硬化率方法,当加工硬化率函数对应变(ε)求一阶导数后的函数取最小值时所对应的应变值,即为临界应变(εc)。采用新的加工硬化率方法,确定AZ80镁合金在不同变形条件下动态再结晶的临界应变和临界应力;研究热变形工艺参数对临界应变和临界应力的影响规律;确定AZ80镁合金热变形过程中的临界应变、临界应力、稳定应变与Z参数的关系模型。模型计算结果与Sellars模型结果相吻合。  相似文献   

3.
采用热模拟实验方法测试了AZ80镁合金材料的真实应力-应变曲线, 变形温度范围533K - 683K, 应变速率范围0.001 - 10 s-1, 变形程度为50%。动态再结晶的晶粒尺寸随着变形温度的升高和应变速率的降低而增大。确定了AZ80镁合金的热激活能, 确定了AZ80镁合金材料热变形时的本构方程。根据Sellars方程, 确定了AZ80镁合金的动力学模型, 其定义为描述发生动态再结晶体积分数与变形温度和应变速率的函数关系。确定了AZ80镁合金的运动学模型, 其定义为描述动态再结晶晶粒尺寸与Z函数之间数学关系. 动态再结晶晶粒尺寸的模型计算结果与实验结果相吻合,相对误差小于11.8%。确定了临界应变和稳态应变与Z函数之间数学关系。  相似文献   

4.
AZ31镁合金薄板动态再结晶对其拉伸性能的影响   总被引:2,自引:1,他引:2  
基于热粘塑性本构理论,构建拉伸动态再结晶理论模型,并将该模型引入AZ31镁合金薄板变温拉伸的数值仿真.通过数值仿真分析AZ31镁合金薄板动态再结晶对其拉伸性能的影响.采用Gleeble3500热模拟试验机对AZ31镁合金薄板在定应变速率为0.25/s、不同温度(473、523、573和673 K)条件下进行单向拉伸实验,并利用光学显微镜观察变形中合金微观组织的演变.结果表明:随着镁合金薄板变形温度的升高,动态再结晶晶粒数量逐渐增加,尺寸先增后减,同时分布更趋于均匀;单向拉伸时,动态再结晶导致镁合金板材出现动态软化现象,流动应力降低.  相似文献   

5.
《塑性工程学报》2016,(1):104-111
采用Gleeble-1500对AZ80镁合金进行热压缩实验,研究其在变形温度为573K~723K、应变速率为0.001s~(-1)~1s~(-1)条件下的高温变形特性及动态再结晶行为。根据真实应力-应变曲线,建立了考虑应变影响的双曲正弦本构模型,模型计算的应力值与实验值相对误差为2.52%。利用未再结晶区的真实应力-应变曲线,建立了AZ80镁合金的动态再结晶动力学模型。  相似文献   

6.
基于变形温度250~400 ℃和应变速率0.001~1 s-1条件下的铸态AZ80镁合金的热压缩试验数据,建立了基于应力位错关系和动态再结晶动力学的物理基本构模型以及前馈反向传播算法的人工神经网络(ANN)模型来预测AZ80镁合金的热变形行为。采用相关系数(R)、平均绝对相对误差(AARE)、相对误差(RE)3种统计学指标来验证2种模型的预测精度。结果表明,2种模型均可以准确预测AZ80镁合金的热变形行为。其中,ANN模型预测的应力值与实验数据更为吻合,其R和AARE分别为0.9991和2.02%,而物理基本构模型预测的R和AARE分别为0.9936和4.52%。ANN模型较好的预测能力归功于它擅长处理复杂的非线性关系,而物理基本构模型的预测能力是基于模型具有一定的物理意义,模型参数的确定充分考虑了热变形过程中的加工硬化(WH)、动态回复(DRV)和动态再结晶(DRX)的热动力学机制。最后,对这2种本构模型的优缺点及适用范围进行了比较讨论。  相似文献   

7.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

8.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

9.
采用热模拟实验方法获得了AZ31镁合金热变形真实应力-真实应变曲线,分析了变形工艺参数对AZ31镁合金热变形动态再结晶晶粒尺寸的影响规律。随着塑性变形应变速率的增大,动态再结晶晶粒尺寸减小。随着塑性变形温度的升高,晶粒尺寸增大。基于Yada模型,建立了AZ31镁合金热变形动态再结晶晶粒尺寸与变形工艺参数关系模型,以及动态再结晶临界应变与变形温度关系模型。晶粒尺寸预测模型计算值与实验值相吻合,最大相对误差为8.5%。临界应变模型计算值与实验值相吻合,最大相对误差为8.1%。建立的动态再结晶晶粒尺寸预测模型和临界应变预测模型的适用条件为变形温度250~400℃,应变速率0.01~1.0 s-1。  相似文献   

10.
AZ80合金高温变形行为及加工图   总被引:6,自引:0,他引:6  
为实现AZ80合金塑性成形的数值模拟和制定其合理的热加工工艺,利用热模拟机对AZ80合金进行不同变形温度和应变速率的高温压缩变形行为研究.结果表明:AZ80合金的高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的AZ80合金高温变形的本构模型较好地表征其高温流变特性,模型计算精度高;同时,利用建立的AZ80合金的DMM加工图分析其变形机制和失稳机制,从提高零件力学性能角度考虑,可以优先选择变形温度为300~350 ℃、应变速率为0.001~0.01 s-1的工艺参数.  相似文献   

11.
以AZ31镁合金在热压缩过程中微观组织演变为基础,结合元胞自动机模型(CA),建立了镁合金变形过程中再结晶晶粒尺寸模型和动态再结晶百分数模型。通过对铸态AZ31镁合金在不同变形条件下的热压缩实验,推导出镁合金的位错密度模型、临界位错密度模型、形核率模型和晶粒长大模型。结合元胞自动机具体演变规则,建立元胞自动机模型,并利用应力应变曲线及晶粒大小验证元胞自动机的模拟结果,验证该模型的准确性,结合实验数据和JMAK理论,推导出再结晶晶粒尺寸模型和动态再结晶百分数模型。借助DEFORM-3D分析软件得到镁合金在变形过程中,晶粒尺寸分布的变化情况以及动态再结晶百分数分布的变化情况。  相似文献   

12.
AZ80镁合金热变形行为研究   总被引:4,自引:0,他引:4  
采用圆柱体等温热压缩试验对AZ80镁合金的热变形行为进行研究.结果表明,当变形温度为200~350℃、应变速率为2×10-3~1 s-3时,随着应变速率的增加和变形温度的降低,合金的流变应力增加;通过线性回归获得了AZ80镁合金高温条件下的流变应力本构方程,发现应变速率敏感指数m随着温度的升高呈上升趋势;同时采用力学方法直接从流变曲线确定了AZ80镁合金发生动态再结晶的临界应变量,并回归出临界应变量与Z参数的关系式.  相似文献   

13.
《电焊机》2015,(8)
以铸态AZ31B镁合金为研究对象,分别在应变速率为0.005 s-1、0.05 s-1、0.5 s-1,变形温度在300℃、350℃、400℃的条件下,采用热变形模拟实验机对铸态合金进行再结晶行为研究,建立并验证了热变形本构方程、再结晶热力学模型和动态再结晶晶粒尺寸模型。研究表明,晶粒在较低应变速率和较高变形温度下更细,减小了晶界处孪晶位错密度,也为降低后续轧制时边裂现象发生的概率提供了依据。  相似文献   

14.
AZ31镁合金高温本构方程   总被引:8,自引:0,他引:8  
分析并建立了具有动态再结晶型金属的本构方程模型,用Gleeble—1500D热/力模拟仪对AZ31镁合金进行圆柱体单向热压缩试验,并根据实验结果分析计算了本构方程模型中的各参数,获得了完整的AZ31镁合金高温本构方程?用本构方程计算了实验条件下的流变应力,计算值与实验值能较好地吻合,误差在8%以内。可为制订AZ31镁合金的热加工工艺提供理论与数据。  相似文献   

15.
基于BP神经网络的镁合金晶粒尺寸及流变应力模型   总被引:5,自引:0,他引:5  
通过等温压缩试验研究了热变形条件对AZ61B镁合金再结晶晶粒尺寸及其流变应力的影响,并采用人工神经网络方法分别建立了动态再结晶晶粒尺寸及流变应力的模型。利用反向传播算法对网络进行试探性训练研究,得到了最佳参数。结果表明,所建立的网络模型具有优良的性能,能精确预测AZ61B合金热变形条件下的再结晶晶粒尺寸及流变应力。  相似文献   

16.
利用Gleeble-1500D热模拟试验机对AZ31镁合金在温度为300℃、350℃、400℃,应变速率为0.001 s-1~1.0s-1,每道次的变形量分别是:30%,10%,10%,总变形量为43%条件下,进行了高温多道次压缩试验。测量了不同应变速率下的应力-应变曲线。根据热模拟试验数据,确定AZ31镁合金高温变形本构关系模型,该本构关系模型的相对计算误差小于8%。试验确定的AZ31镁合金本构关系模型的适用温度范围为300℃~400℃,应变速率范围为0.001 s-1~1.0 s-1。得出动态再结晶激活能为207.61 kJ/mol。  相似文献   

17.
通过GLEEBLE压缩试验获得铸态AZ31B镁合金真应力应变曲线,本试验从真应力应变曲线出发,通过数值分析获得临界应力应变模型、饱和应力模型和稳态应力模型等多种应力模型。同时,结合位错理论和动态再结晶动力学,根据镁合金在变形过程中发生动态再结晶的临界点,将应力应变曲线分为两段,分别对以动态回复为主的曲线和以动态再结晶为主的曲线建立本构模型,分析并得出了动态再结晶分数与基于动态再结晶下的流变应力之间的变化规律。  相似文献   

18.
采用圆柱体等温热压缩试验对AZ80镁合金的变形行为进行研究。结果表明,当变形温度为200~350℃,应变速率为0.002~1s-1,随着应变速率的增加和变形温度的降低,合金的流变应力增加;通过线形回归获得了AZ80镁合金高温条件下的流变应力本构方程,发现应变速率敏感指数m随着温度的升高呈上升趋势;同时采用力学方法直接从流变曲线确定了AZ80镁合金发生动态再结晶的临界应变量,并回归出临界应变量与Zenner-Hollmon参数的关系式。  相似文献   

19.
在400℃对AZ80镁合金进行了平面压缩,研究了变形次数对其组织与性能的影响.结果表明,AZ80镁合金在变形过程中发生了动态再结晶,塑性变形可以显著细化AZ80镁合金的显微组织.相同热处理状态下,变形次数越多,晶粒尺寸越细小,硬度越高;在相同变形次数下,T6热处理状态比T5热处理状态晶粒大,但硬度高.  相似文献   

20.
AZ31镁合金热变形流动应力预测模型   总被引:1,自引:0,他引:1  
采用近等温单轴压缩实验获得了AZ3l镁合金变形温度为523 723 K,应变速率为0.01—10 s-1条件下的流动应力,分析了变形温度和应变速率对流动应力的影响规律.结果表明,AZ31镁合金变形过程中发生了动态再结晶,523 K时形成细小组织;而723 K时动态再结晶和长大的晶粒沿径向拉长.考虑实验过程塑性变形功和摩擦功引起的温度升高,在高应变速率条件下采用温度补偿修正了流动应力.在此基础上,建立了基于双曲正弦模型的峰值流动应力和统一本构关系,该模型利用材料参数耦合应变来描述流动应力的应变敏感性,进一步获得了合金热变形过程中流动应力与变形温度、应变速率和应变的定量关系.采用该本构关系模型预测流动应力具有较高的精度,预测值与实测值相关系数为0.976,平均相对误差为5.07%,实验条件范围内预测的流动应力与实验值几乎能保持一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号