首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
针对Al-Fe2O3铝热体系, 采用SiO2和Na2B4O7作为添加剂, 利用离心自蔓延高温合成(SHS)技术制备了陶瓷复合钢管, 研究了添加质量分数7%SiO2和2%、 4%、 6% Na2B4O7对复合管陶瓷层组织结构和力学性能的影响。XRD分析结果表明陶瓷层的主要成分有α-Al2O3、 FeAl2O4、 Al2SiO5、 B2O3等; SEM观察发现陶瓷层表面晶粒排布致密, 结合能谱分析陶瓷层中含有Fe单质; 金相显微镜观察结果表明陶瓷层和Fe过渡层结合良好, 没有间隙存在; 复合钢管的抗剪强度和压溃强度测试结果表明: 添加质量分数为7% SiO2和4% Na2B4O7的陶瓷复合钢管的抗剪强度和压溃强度分别达到22 MPa和430 MPa, 比未添加添加剂的样品分别提高了240%和22.8%。   相似文献   

2.
以原位缩聚法制备的中间相炭微球/碳纳米管(MCMB/CNTs)复合微球为原料, 通过添加氧化硼(B2O3)粉体和磷酸浸渍对该复合材料进行了基体和表面改性。采用扫描电子显微镜(SEM)、三点弯曲法、热重分析(TG)以及恒温氧化测试方法对复合材料的表面形貌、弯曲强度以及抗氧化性能进行了表征与测试。结果表明: 添加适量的B2O3可以有效提升复合材料的抗氧化性能和弯曲强度, B2O3含量超过2%时, 复合材料的弯曲强度逐渐下降。将含有2% B2O3的复合材料试样进行磷酸浸渍处理后, 试样的弯曲强度可达66 MPa, 初始氧化温度520℃, 经过500℃恒温氧化60 min后其氧化失重率仅为5%, 弯曲强度仍达到50.3 MPa。  相似文献   

3.
通过机械分散技术制备了纳米Al2O3 /环氧、酚酞聚芳醚酮/环氧和纳米Al2O3/ 酚酞聚芳醚酮/环氧复合材料,并对比研究了其拉伸模量、拉伸强度、断裂性能和热性能。结果表明:纳米Al2O3及酚酞聚芳醚酮在环氧树脂中呈均匀的分散状态;纳米Al2O3使环氧树脂拉伸模量增加,使拉伸强度先增后降;酚酞聚芳醚酮使环氧树脂拉伸模量略微下降,对拉伸强度影响不明显;纳米Al2O3/酚酞聚芳醚酮/环氧三元复配体系的拉伸模量和拉伸强度呈非单调变化的趋势;纳米Al2O3和酚酞聚芳醚酮对环氧树脂均有增韧作用,三元复配体系增韧效果更明显,表现出协同增韧效果;高含量纳米Al2O3降低了环氧树脂的初始分解温度,而其余填料对环氧树脂热稳定性具有改善作用,填料均使环氧树脂玻璃化转变温度有所降低。  相似文献   

4.
以AlB2和SiC颗粒填充酚醛树脂作为基体,高硅氧纤维作为增强体,制备了高硅氧纤维/可瓷化酚醛树脂复合材料。研究了不同添加量的AlB2颗粒对高硅氧纤维/可瓷化酚醛树脂复合材料常温和1 200℃裂解产物性能的影响,并分析了AlB2颗粒对其裂解产物的增强机制。结果表明:随着AlB2颗粒的添加,高硅氧纤维/可瓷化酚醛树脂复合材料常温下的弯曲强度逐渐减小,但其1 200℃裂解产物的弯曲强度先增大后减小。当AlB2颗粒与酚醛树脂的质量比为12%时,裂解产物的弯曲强度提高最为显著,相比未添加AlB2颗粒的复合材料,其裂解产物的弯曲强度提高了16.4%。AlB2颗粒在1 200℃有氧环境中反应生成由B2O3、Al2O3和Al20B4O36组成的共熔体,填充了树脂基体裂解产生的孔隙,明显减少复合材料...  相似文献   

5.
选用Nextel610型Al2O3纤维为增强体、ZL210A连续氧化铝合金为基体,采用真空压力浸渗法制备纤维增强铝基复合材料(Al2O3f/Al),纤维的体积分数为40%,预热温度分别为500、530、560和600℃,研究了纤维预热温度对Al2O3f/Al复合材料的微观组织、纤维损伤和力学性能的影响。结果表明:随着纤维预热温度的提高复合材料的致密度随之提高,最大达到99.2%,材料的组织缺陷最少,纤维的分布均匀;随着纤维预热温度的提高从复合材料中萃取出来的Al2O3纤维的拉伸强度不断降低,纤维预热温度为600℃的复合材料中Al2O3纤维的拉伸强度仅为1150 MPa,纤维表面粗糙,有大尺寸附着物。纤维的预热温度对Al2O3f/Al复合材料的拉伸强度有显著的影响。预热温度为500、530、560和600℃的复合材料其拉伸强度分别对应于298、465、498和452 MPa。组织缺陷、纤维损伤和界面结合强度,是影响连续Al2O3f/Al复合材料强度的主要因素。  相似文献   

6.
以稻草纤维及丙烯腈-丁二烯-苯乙烯(ABS)为原料,分别以活性炭、Al2O3、SiO2和硅烷偶联剂为增强改性剂,通过混炼-模压工艺制备了改性剂-稻草/ABS复合材料,对比研究了几种不同增强改性剂的增强效果及其增强机制。结果表明:硅烷偶联剂对稻草/ABS复合材料的增强效果较差,活性炭、Al2O3和SiO2对稻草/ABS复合材料的增强均优于硅烷偶联剂,其中Al2O3的增强效果最佳。当Al2O3的添加量(Al2O3∶ABS质量比)为5%时,Al2O3-稻草/ABS复合材料的拉伸、弯曲及冲击强度分别达到最大值27.719 MPa、61.05 MPa和26.53 kJ/m2;当无机物添加量(无机物∶ABS质量比)为5%时,复合材料的耐水性能表现为:5% Al2O3 > 5%活性炭 > 5% SiO2 > 未添加,与复合材料的力学性能梯度相符;改性剂-稻草/ABS复合材料的流变性能则表现为:5%活性炭 > 5% Al2O3 > 5% SiO2 > 未添加。  相似文献   

7.
采用低分子量溴化聚苯乙烯(LBPS)与三氧化二锑(Sb2O3)按固定比例复配,制备LBPS-Sb2O3协同阻燃剂,与玻璃纤维(GF)和聚对苯二甲酸丁二醇酯(PBT)熔融共混制备了阻燃玻纤增强PBT。研究了LBPS-Sb2O3阻燃体系对玻纤增强PBT的热稳定性、燃烧性能和机械性能的影响。结果表明:玻纤增强PBT中LBPS-Sb2O3质量分数占比为17%、19%和21%时,UL94阻燃级别均达V-0级,质量分数为19%时,极限氧指数达36%以上,阻燃效果较优;拉伸强度呈现先增加后降低的趋势,当LBPS-Sb2O3质量分数占比为17%时,拉伸强度增加至53.9MPa,当质量分数由19%增至21%时,拉伸强度显著降低;LBPS-Sb2O3的加入,使玻纤增强PBT的初始分解温度略有下降,熔融温度基本保持不变;锥形量热仪燃烧测试表明,LB...  相似文献   

8.
以溴化聚苯乙烯(BPS)为阻燃剂,Sb2O3纳米颗粒(nano-Sb2O3)为协效阻燃剂,聚对苯二甲酸丁二醇酯(PBT)为基体,热塑性聚氨酯弹性体(TPU)为增韧组分,采用球磨分散和熔融共混的方法制备出TPU/nano-Sb2O3-BPS-PBT阻燃复合材料。通过DSC、拉伸、冲击和极限氧指数(LOI)等性能测试,研究了TPU质量分数对TPU/nano-Sb2O3-BPS-PBT阻燃复合材料力学性能与阻燃性能的影响。研究结果表明:TPU的加入可改善TPU/nano-Sb2O3-BPS-PBT阻燃复合材料的韧性;随着TPU质量分数的增加,TPU/nano-Sb2O3-BPS-PBT阻燃复合材料的缺口冲击强度上升,当TPU质量分数为9wt%时,其冲击强度相比于纯PBT提高了137%,断裂伸长率相比于纯PBT提高了340%,但该复合材料的拉伸强度有所下降。当TPU质量分数为3wt%时,该复合材料的拉伸强度大于纯PBT,冲击强度相比于纯PBT提高了52%,同时达到了难燃等级。此时,TPU/nano-Sb2O3-BPS-PBT阻燃复合材料表现出优异的综合性能。   相似文献   

9.
通过化学气相渗透(CVI)工艺在典型国产SiC纤维表面沉积BN涂层,并在800~1200℃的氧化环境下处理1 h。对涂覆BN涂层的SiC纤维氧化后的形貌、结构以及成分进行表征,通过单丝拉伸强度评价涂覆BN涂层的SiC纤维氧化后的性能变化。结果表明,氧化温度低于1000℃时,BN涂层及其氧化物层能够有效阻止O2对内部SiC纤维的侵蚀,高于此温度时,SiC纤维被氧化。随着氧化温度的升高,涂覆BN涂层的SiC纤维表面氧化物经历α-B2O3→SiCxOy→非晶SiO2的历程。涂覆BN涂层的SiC纤维单丝拉伸强度随着温度的升高呈衰减趋势,且BN涂层直接暴露在氧化环境下反而降低SiC纤维的抗氧化能力。纤维断裂的失效源先由BN涂层缺陷过渡为B2O3氧化层缺陷最终演变为SiO2氧化层气孔缺陷。  相似文献   

10.
采用一种具有芯-壳结构的复合纳米纤维增强铝合金复合材料,可以在提高抗拉强度的同时增加塑性。通过真空热压烧结技术制备了Al2O3@Y3Al5O12复合纳米短纤维增强2024铝合金复合材料。研究了纤维添加质量分数对复合材料致密度、硬度、抗拉强度及延伸率的影响;并探究了芯-壳结构在复合材料增韧中的作用。结果表明:Al2O3@Y3Al5O12纳米短纤维具有良好的分散性,在超声分散及机械搅拌混粉后均匀吸附在铝合金颗粒表面,无分层及团聚现象;经热压烧结后,Al2O3@Y3Al5O12纳米短纤维以短纤维形态均匀分散在铝合金基体内,少量添加Al2O3@Y3Al5O12纳米短纤维起到了桥联和孔洞填充作用,使复合材料致密度和硬度提高;添加质量分数为1wt%时,抗拉强度和延伸率取得最大值,由铝合金的249.3 MPa、2.9%增加到299.1 MPa、4.3%。Al2O3@Y3Al5O12纳米短纤维的添加可以细化晶粒,阻碍裂纹扩展,且在拔出/断过程中Al2O3@Y3Al5O12纳米短纤维芯-壳结构的塑性变形起到了增强增韧作用。   相似文献   

11.
程宽  赵洪峰  周远翔 《材料工程》2022,50(8):153-159
采用传统的陶瓷烧结工艺制备B_(2)O_(3),In_(2)O_(3),Al_(2)O_(3)多元施主掺杂的直流ZnO压敏陶瓷样品,考察不同掺杂比(0.1%~0.4%,摩尔分数)的B_(2)O_(3)对直流ZnO压敏陶瓷样品微观结构和电气性能的影响。利用X射线衍射仪、扫描电子显微镜、能量色散X射线光谱及数字源表等分别对样品的物相、微观形貌、成分及电性能进行表征。结果表明,多元施主掺杂剂(Al_(2)O_(3),In_(2)O_(3)和B_(2)O_(3))的共掺杂明显改善直流ZnO压敏陶瓷的综合性能,其中,Al_(3)+提高样品的电导率,降低样品的残压比;In^(3+)通过钉扎效应限制晶粒的生长,改善样品的电压梯度;B^(3+)的掺杂增加样品的表面态密度,提高势垒高度并有效抑制泄漏电流的增加。B_(2)O_(3)掺杂量为0.3%时,样品的综合性能最优:电压梯度为486 V/mm,泄漏电流密度为0.58μA/cm^(2),非线性系数为85,残压比为1.55。  相似文献   

12.
采用原位聚合与热亚胺化的方法,成功制备了一系列不同纳米Al_2O_3粒子质量分数的纳米Al_2O_3/聚酰亚胺(PI)复合薄膜。通过SEM、TEM、XRD、FTIR、LCR数字电桥、高压电源及电子万能材料试验机对纳米Al_2O_3/PI复合薄膜的微观结构、介电性能及力学性能进行了表征和测试。结果表明:纳米Al_2O_3粒子在均匀地分散在PI基体中;当纳米Al_2O_3粒子质量分数为8%时,纳米Al_2O_3/PI复合薄膜的击穿强度和拉伸强度均达到了最大值;纳米Al_2O_3/PI复合薄膜的介电常数随纳米Al_2O_3质量分数的增加而增加。  相似文献   

13.
在堇青石化学计量组分和非堇青石化学计量组分中分别添加B2O3, 通过玻璃粉末烧结法制备玻璃陶瓷,并研究了玻璃陶瓷的性能, 包括非等温析晶动力学、热学、力学和介电性能。本研究使用非堇青石化学计量组分制备了α-堇青石基玻璃陶瓷, 并加入B2O3促进α-堇青石析出, 提高MgO-Al2O3-SiO2玻璃的结晶能力。玻璃成分中过量的MgO和SiO2不会影响玻璃的析晶能力, 但会影响析晶的类型; 增加B2O3含量可以制备低热膨胀系数的α-堇青石基玻璃陶瓷, 但会降低玻璃陶瓷的软化点。此外, 增加B2O3含量还可以提高玻璃陶瓷的致密性和强度。α-堇青石基玻璃陶瓷的最大抗弯强度、弹性模量、断裂韧性和体积密度分别为(42.4±3.0) MPa、(34.0±2.9) GPa、(0.7±0.15) MPa·m1/2和1.53 g/cm3。制备的α-堇青石基玻璃陶瓷表现出良好的介电性能(介电常数低至3.5), 热膨胀系数低至4.22×10-6 K-1。  相似文献   

14.
The effects of the ceramic particle material on the flexural Weibull modulus, characteristic flexural strength, and damage parameters of particulate-reinforced metal-matrix composites were studied. Three high volume fill composites were fabricated using the pressure infusion casting technique: they were reinforced with SiC, B4C, and -Al2O3 particles. Four-point bend testing determined the effects of particle material on flexural strength and elastic modulus. It was found the B4C and SiC composites had similar flexural Weibull modulus, low deflection, and similar damage parameters. The -Al2O3 reinforced composite had the largest flexural Weibull modulus, highest deflection at failure, and largest damage parameter. Extensive microstructural and SEM fractographs were taken of the as-processes and fractured specimens. The mechanisms leading to the dominant failure modes are discussed.  相似文献   

15.
以B2O3、Al、石墨和B4C粉体为原料, 采用反应-热压烧结工艺在1800℃/35 MPa的烧结条件下制备了致密的碳化硼基复相陶瓷, 对复相陶瓷的显微组织、物相组成、硬度、抗弯强度以及断裂韧性进行了观察与测试, 采用7.62 mm口径的穿甲弹分别对约束状态下和自由状态下的复相陶瓷靶板进行了剩余穿深试验(DOP), 并以AZ陶瓷和B4C陶瓷为对比靶板, 根据剩余穿深结果计算了各自的防护系数。结果表明, 复相陶瓷的主要成分为B4C和Al2O3, 其中主相B4C约占70wt%, 第二相Al2O3约占30wt%, 由Al-B-O共同构成的复杂中间相填充在主相与第二相之间; 复相陶瓷的密度、硬度、抗弯强度和断裂韧性分别为2.82 g/cm3, 41.5 GPa, 380 MPa和3.9 MPa•m1/2, 其中断裂韧性比纯碳化硼陶瓷提高了85.7%; 复相陶瓷的防护系数为7.34, 比AZ陶瓷和碳化硼陶瓷分别提高了11%和70%; 在约束状态下, 各个样品的防护系数比自由状态均提高10%。  相似文献   

16.
为了降低无金属黏结相碳化钨(WC)硬质合金的烧结温度并获得较高的断裂韧度,采用MgO和B_(2)O_(3)协同增韧WC硬质合金。通过放电等离子烧结技术(SPS)在1400℃的较低温度下制备出致密的WC-MgO-B_(2)O_(3)硬质合金块体材料,研究MgO-B_(2)O_(3)对无金属黏结相WC硬质合金的烧结机理、微观组织演变以及力学性能的影响规律。结果表明:MgO-B_(2)O_(3)的添加促进了WC的烧结致密化,显著降低了无金属黏结相WC硬质合金的烧结温度。随着MgO-B_(2)O_(3)添加量的提高,组织中的部分第二相形貌发生显著改变,逐渐由短杆状转变为长杆状,再转变为聚集时的块状。当MgO-B_(2)O_(3)添加量达到8%(质量分数)时,块体材料具有较好的断裂韧度,为(9.45±0.37)MPa·m^(1/2),同时其硬度为(18.16±0.17)GPa。  相似文献   

17.
Fe/Al2O3复合材料的制备和性能   总被引:1,自引:0,他引:1  
用石墨埋烧方法制备Fe/Al2O3复合材料,对其力学性能和微观结构进行了分析。结果表明:Fe/Al2O3复合材料的弯曲强度与断裂韧性均随Al2O3含量的升高先升高后降低,当Al2O3含量(质量分数)为70%时,其弯曲强度与断裂韧性分别达到602.49 MPa和9.33 MPa·m1/2,其硬度随Al2O3含量先降低后升高。在烧结过程中在Fe颗粒周围形成一种成分为FeO与FeAl2O4的壳体,在壳体与Fe颗粒之间存在微裂纹缺陷。壳体的形成和壳体与金属颗粒间的微裂纹钝化了外部应力,从而提高了复合材料的韧性。  相似文献   

18.
Si3N4-BN-SiC复合材料以其良好的力学性能和抗氧化性能而具有良好的工程应用前景。本研究以Si、Si3N4稀释剂、B4C和Y2O3为原料, 采用燃烧合成法成功制备了Si3N4-BN-SiC复合材料。通过Si、B4C和N2气之间的反应, 在Si3N4陶瓷中原位引入BN和SiC, 制备的Si3N4-BN-SiC复合材料由长棒状的β-Si3N4和空心球形复合材料组成。实验研究了空心球微结构的形成机理, 结果表明, 生成的SiC、BN颗粒及玻璃相覆盖在原料颗粒上, 当原料颗粒反应完全时, 形成空心球形微结构。并进一步研究了B4C含量对Si3N4-BN-SiC复合材料力学性能的影响。原位引入SiC和BN在一定程度上可以提高复合材料的力学性能。当B4C添加量为质量分数0~20%时, 获得了抗弯强度为28~144 MPa、断裂韧性为0.6~2.3 MPa·m 1/2, 杨氏模量为17.4~54.5 GPa, 孔隙率为37.7%~51.8%的Si3N4-BN-SiC复合材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号