首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copolymerization of styrene (St) and methyl methacrylate (MMA) was carried out using 1,1,2,2‐tetraphenyl‐1,2‐bis (trimethylsilyloxy) ethane (TPSE) as initiator; the copolymerization proceeded via a “living” radical mechanism and the polymer molecular weight (Mw) increased with the conversion and polymerization time. The reactivity ratios for TPSE and azobisisobutyronitrile (AIBN) systems calculated by Finemann–Ross method were rSt = 0.216 ± 0.003, rMMA= 0.403 ± 0.01 for the former and rSt= 0.52 ± 0.01, rMMA= 0.46 ± 0.01 for the latter, respectively, and the difference between them and the effect of polymerization conditions on copolymerization are discussed. Thermal analysis proved that the copolymers obtained by TPSE system showed higher sequence regularity than that obtained by the AIBN system, and the sequence regularity increased with the content of styrene in copolymer chain segment. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1474–1482, 2001  相似文献   

2.
Isotactic polypropylene graft copolymers, isotactic[polypropylene‐graft‐poly(methyl methacrylate)] (i‐PP‐g‐PMMA) and isotactic[polypropylene‐graft‐polystyrene] (i‐PP‐g‐PS), were prepared by atom‐transfer radical polymerization (ATRP) using a 2‐bromopropionic ester macro‐initiator from functional polypropylene‐containing hydroxyl groups. This kind of functionalized propylene can be obtained by copolymerization of propylene and borane monomer using isospecific MgCl2‐supported TiCl4 as catalyst. Both the graft density and the molecular weights of i‐PP‐based graft copolymers were controlled by changing the hydroxyl group contents of functionalized polypropylene and the amount of monomer used in the grafting reaction. The effect of i‐PP‐g‐PS graft copolymer on PP‐PS blends and that of i‐PP‐g‐PMMA graft copolymer on PP‐PMMA blends were studied by scanning electron microscopy. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
Atom transfer radical polymerization (ATRP) of three‐armed polystyrene[PS] and poly(styrene‐b‐isobutyl methacrylate)[PS‐b‐PiBμMA] were accomplished using an initiator with tri‐active C‐Br end group function and cuprous (I) bromide/2,2′‐bipyridyne catalytic system. The characterization obtained by FT‐IR, 1H‐NMR, and GPC techniques. The average molecular weight and polydispersity of PS and PS‐b‐PiBμMA were determined as 19,800, 29,300 and as 1.37 and 1.15, respectively, which indicates that the constant concentration of growing chains are present throughout the polymerization. The refractive index and extinction coefficient of the samples were determined in the visible range as a function of wavelength. The refractive index dispersion curves of the thin films were fitted by the Cauchy‐Sellmeier model. The width of localized states (Eu) values changed inversely with optical band gaps (Eg) of the films. While the calculated Eu values of films for initiator, PS and PS‐b‐PiBμMA were determined as 2.72, 2.98, and 2.94 eV, the Eg values were determined as 3.43; 3.11, and 3.16 eV, respectively. The dispersion parameters of thin films were determined. These parameters changed in the investigated wavelength ranges. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

4.
The N‐substituted polyaniline (PANi) was synthesized by incorporation of bromine‐terminated polystyrene (PS‐Br) onto the emeraldine form of polyaniline. End brominated polystyrene was synthesized by atom transfer radical polymerization (ATRP) technique and then deprotonated polyaniline was reacted with PS‐Br to prepare PS‐grafted PANi (PS‐g‐PANi) copolymer through N‐grafting reaction. The degree of N‐grafting can be controlled by adjusting the molar feed ratio of PS‐Br to the number of repeat units of PANi. The microstructure and compositions of the PS‐g‐PANi copolymers with different degrees of N‐substitution were characterized by FT‐IR, elemental analysis, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The cyclicvoltammetry shows that the electroactivity of N‐substituted PANi is strongly dependent on the degree of N‐grafting. The solubility of PS‐g‐PANi copolymers in common organic solvents such as tetrahydrofuran and chloroform was improved by increasing the degree of N‐grafting, and also the samples are partially soluble in xylene. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   

6.
A new graft copolymers poly(aryl ether sulfone)‐graft‐polystyrene (PSF‐g‐PS) and poly(aryl ether sulfone)‐graft‐[polystyrene‐block‐poly(methyl methacrylate)] (PSF‐g‐(PS‐b‐PMMA)) were successfully prepared via atom transfer radical polymerisation (ATRP) catalyzed by FeCl2/isophthalic acid in N,N‐dimethyl formamide. The products were characterized by GPC, DSC, IR, TGA and NMR. The characterization data indicated that the graft copolymerization was accomplished via conventional ATRP mechanism. The effect of chloride content of the macroinitiator on the graft copolymerization was investigated. Only one glass transition temperature (Tg) was detected by DSC for the graft copolymer PSF‐g‐PS and two glass transition temperatures were observed in the DSC curve of PSF‐g‐(PS‐b‐PMMA). The presence of PSF in PSF‐b‐PS or PSF‐g‐(PS‐b‐PMMA) was found to improve thermal stabilities. © 2002 Society of Chemical Industry  相似文献   

7.
To compare the segregation ability of 1,4‐butanediol dimethacrylate‐crosslinked polystyrene (BDDMA‐PS) and divinylbenzene‐crosslinked polystyrene (DVB‐PS), a set of difficult sequence peptides characterized by high‐arithmetic‐average β‐sheet stabilizing potential (SPβ) and low‐stepwise arithmetic average random coil conformational parameter (Pc*) were synthesized on both supports (~ 2 mmol Cl g?1) under identical conditions. The yield and purity of the peptides obtained from BDDMS‐PS resin were higher than from DVB‐PS resin. The synthetic efficiency of the new support was found to be its ability to suppress the aggregation of growing peptide chains by β‐sheet formation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1717–1723, 2002  相似文献   

8.
We have employed steady sate fluorescence (SSF) and UV‐visible (UVV) techniques to determine the film formation behavior of latex blends. Blend films were prepared from mixtures of a high‐Tg pyrene (P) labeled polystyrene (PS) latex and a low‐Tg copolymer of poly(butyl acrylate‐co‐methyl methacrylate) (BuA/MMA4). Eleven different blend films were prepared in various hard/soft latex compositions at room temperature and annealed at elevated temperatures above glass‐transition (Tg) temperature of polystyerene for 10 min. Fluorescence intensity (IP) from P was measured after each annealing step to monitor the stages of film formation. The evolution of transparency of latex films was monitored using photon transmission intensity, Itr. Film morphologies were examined by atomic force microscopy (AFM). A significant change occurs in both IP and Itr intensities at a certain critical weight fraction of hard latex (Rc = 0.3). Above Rc, two distinct film formation stages, which are named as void closure and interdiffusion processes, were seen in fluorescence data. Transparency of the films was decreased with decreasing PS content, indicating that a phase separation process occurs between PS and BuA/MMA4 phases by thermal treatment, which results in turbid films. However, below Rc, no change was observed in IP and Itr upon annealing, whereas transparency increased overall with increasing BuA/MMA4 ratio. We explained this result as the phase separation process between PS and BuA/MMA4 blends. These results were also confirmed by AFM pictures. Film formation stages above Rc were modeled and related activation energies were calculated. POLYM. COMPOS., 27:431–442, 2006. © 2006 Society of Plastics Engineers  相似文献   

9.
Multiwalled carbon nanotubes‐graft‐polystyrene (MWNTs‐g‐PS) was synthesized by atom transfer nitroxide radical coupling chemistry. MWNTs with 2,2,6,6‐tetramethylpiperidine‐1‐oxy (MWNTs‐TEMPO) groups was prepared first by esterification of 4‐hydroxy (HO)‐TEMPO and carboxylic acid group on the surface of MWNTs (MWNTs‐COOH); PS with bromide end group (PS‐Br) were then obtained by atom transfer radical polymerization using ethyl 2‐bromoisobutyrate as initiator and CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as catalyst. The MWNTs‐TEMPO was mixed with PS‐Br and heated to 90°C in the presence of CuBr/PMDETA to form MWNTs‐g‐PS. The product was characterized by FTIR, NMR, TGA, and TEM. TEM indicates that the MWNTs are enveloped by the polymer molecules. The content of grafted polymers is 46.7% by TGA measurements when the number‐average molecular weight (Mn) of PS‐Br is 10,200 g/mol. The as‐prepared nanocomposites exhibit relatively good dispersibility in solvents such as CH2Cl2, THF, and toluene. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Poly(vinyl acetate)–TEMPO (PVAc–TEMPO) macroinitiators were synthesized by bulk polymerization of vinyl acetate in the presence of benzoyl peroxide (BPO) followed by termination with 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO). Radicals were mainly transferred to the acetoxy methyl groups in PVAc during the polymerization. The PVAc–TEMPO macroinitiators had several TEMPO‐dormant sites and styrene bulk polymerization with the macroinitiators produced poly(vinyl acetate)‐graft‐polystyrene (PVAc‐g‐PS). All the TEMPO‐dormant sites of PVAc–TEMPO macroinitiators participated in the styrene polymerization with almost equal reactivity. Methanolysis of PVAc‐g‐PS broke the PS branches apart from the PVAc backbone chains. Hydrophobic or hydrophilic porous membranes with controlled pore size could be prepared by removing the PVAc domains or the PS domains from the graft copolymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1658–1667, 2001  相似文献   

11.
Atom transfer radical polymerization (ATRP) was applied to synthesize a new kind of star polymers of hyperbranched polyglycerol (HPG) core with multiarms of PS‐b‐PtBA and PS‐b‐PAA by using the “core first” technique. The HPG core was obtained by anionic polymerization of glycerol first, and then the pendant hydroxyl groups of HPG were esterified with 2‐bromoisobutyryl bromide to yield the HPG‐g‐Br, which was used as macroinitiator for ATRP of the first monomer (St) and then second monomer (tBA). After hydrolysis of the PtBA block, poly(acrylic acid) (PAA) side chains were formed. The final products and intermediates were characterized by GPC, NMR, and FTIR in detail. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Well‐defined polymer‐Mg(OH)2 nanocomposites were prepared by atom transfer radical polymerization (ATRP). The ATRP initiators were covalently attached to the Mg(OH)2 by esterification of 2‐chloropropionyl chloride with hydroxyl group. The amount of polymer grafted from Mg(OH)2 can be controlled using a different catalyst system and adding a small amount of polar solvent. The well‐defined diblock copolymer, consisting of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) were synthesized. The products were characterized by nuclear magnetic resonance, Fourier transform infrared, differential scanning calorimetry, and thermal gravimetric analysis. The morphologies of PS/PMMA and PS/PMMA/Mg(OH)2g‐PS‐b‐PMMA blends are compared by using a scanning electron microscope. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3680–3687, 2007  相似文献   

13.
A comprehensive mathematical model is developed for “living” free‐radical polymerization carried out in tank reactors and provides a tool for the study of process development and design issues. The model is validated using experimental data for nitroxide‐mediated styrene polymerization and atom transfer radical copolymerization of styrene and n‐butyl acrylate. Simulations show that the presence of reversible capping reactions between growing and dormant polymer chains should boost initiation efficiency when using free nitroxide in conjunction with conventional initiator and also increase the effectiveness of thermal initiation. A study shows the effects of the value of the capping equilibrium constant and capping reaction rate constants for both nitroxide‐mediated styrene polymerization (using alkoxyamine as polymer chain seeds) and atom transfer radical polymerization of n‐butyl acrylate (using methyl 2‐bromopropionate as chain extension seeds). Also the effect of introducing additional conventional initiator into atom transfer radical polymerization of n‐butyl acrylate is studied. It is found that the characteristics of long chain growth are determined by the fast exchange of radicals between growing and dormant polymer chains. Polymerization results in batch, semibatch, and a series of continuous tank reactors are analyzed. The simulations also show that a semibatch reactor is most flexible for the preparation of polymers with controlled architecture. For continuous tank reactors, the residence time distribution has a significant effect on the development of chain architecture. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1630–1662, 2002  相似文献   

14.
Mono‐ and bifunctional poly(phenylene oxide) (PPO) macroinitiators for atom transfer radical polymerization (ATRP) were prepared by esterification of mono‐ and bishydroxy telechelic PPO with 2‐bromoisobutyryl bromide. The macroinitiators were used for ATRP of styrene to give block copolymers with PPO and polystyrene (PS) segments, namely PPO‐block‐PS and PS‐block‐PPO‐block‐PS. Various ligands were studied in combination with CuBr as ATRP catalysts. Kinetic investigations revealed controlled polymerization processes for certain ligands and temperature ranges. Thermal analysis of the block copolymers by means of DSC revealed only one glass transition temperature as a result of the compatibility of the PS and PPO chain segments and the formation of a single phase; this glass transition temperature can be adjusted over a wide temperature range (ca 100–199 °C), depending on the composition of the block copolymer. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
Well‐defined polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐PS triblock copolymers were synthesized by atom‐transfer radical polymerization (ATRP), using C—X‐end‐group PEO as macroinitiators. The triblock copolymers were characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The experimental results showed that the polymerization was controlled/living. It was found that when the number‐average molecular weight of the macroinititors increased from 2000 to 10,000, the molecular weight distribution of the triblock copolymers decreased roughly from 1.49 to 1.07 and the rate of polymerization became much slower. The possible polymerization mechanism is discussed. According to the Cu content measured with atomic absorption spectrometry, the removal of catalysts, with CHCl3 as the solvent and kaolin as the in situ absorption agent, was effective. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2882–2888, 2000  相似文献   

16.
In this contribution, we reported to utilize polystyrene‐block‐polybutadiene‐block‐polystyrene (PS‐b‐PB‐b‐PS), a commercial triblock copolymer to toughen epoxy thermosets. First, a PS‐b‐PB‐b‐PS triblock copolymer was chemically modified with hydroboration‐oxidation reaction, with which the midblock was hydroxylated whereas the endblocks remained unaffected. It was found that the degree of hydroxylation was well controlled. One of the hydroxylated PS‐b‐PB‐b‐PS samples was then used as the macromolecular initiator to synthesize a poly(ε‐caprolactone)‐grafted PS‐b‐PB‐b‐PS via the ring‐opening polymerization. It was found that the PS‐b‐PB‐b‐PS with poly(ε‐caprolactone) grafts can be successfully employed to nanostructure epoxy thermosets; the “core‐shell” microdomains composed of PB and PS were generated in the nanostructured thermosets. The nanostructured thermosets displayed improved fracture toughness. POLYM. ENG. SCI., 59:2387–2396, 2019. © 2019 Society of Plastics Engineers  相似文献   

17.
The thermolysis of labile 1,2‐bis(trimethylsilyloxy)tetraphenylethane groups pendant along polystyrene chains in the presence of various vinyl monomers leads to the direct synthesis of graft copolymers. Depending on the monomer chosen, the polymerization temperature, and the number of active sites by the macroinitiator molecule, crosslinked or total soluble graft copolymers can be prepared. Several conditions were studied in order to attain soluble polystyrene‐g‐poly(methyl methacrylate) copolymers under a controlled polymerization mechanism. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 12–18, 2002  相似文献   

18.
Anionic ring‐opening polymerization of lactams leads to the formation of poly(lactams) or polyamides. This work aimed at comparing the performance of four methods for measuring the conversion of ε‐caprolactam (CL) to polyamide 6. The latter was either a homopolymer (PA6) or grafts onto polystyrene (PS‐g‐PA6 graft copolymer). Those four methods were mass balance based on solvent extraction (methanol, water, THF, or acetone), mass balance based on vacuum drying at 140°C, thermogravimetric analysis (TGA), and elemental analysis based on nitrogen. The mass balances based on methanol extraction and vacuum drying at 140°C and TGA were all suitable for measuring the conversion of CL, whether the resulting polymer was the PA6 or PS‐g‐PA6. The mass balance based on water extraction was good for the PA6 and not good for the PS‐g‐PA6. The elemental analysis based on nitrogen was not suitable for the PA6 nor for the PS‐g‐PA6. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1972–1981, 2006  相似文献   

19.
Natural rubber (NR) latex was grafted by emulsion polymerization with styrene monomer, using cumene hydroperoxide/tetraethylene pentamene as redox initiator system. The polystyrene‐grafted NR (PS‐g‐NR) was hydrogenated by diimide reduction in the latex form using hydrazine and hydrogen peroxide with boric acid as a promoter. At the optimum condition for graft copolymerization, a grafting efficiency of 81.5% was obtained. In addition, the highest hydrogenation level of 47.2% was achieved using a hydrazine:hydrogen peroxide molar ratio of 1:1.1. Hydrogenation of the PS‐g‐NR (H(PS‐g‐NR)) increased the thermal stability. Transmission electron microscopy analysis of the H(PS‐g‐NR) particles revealed a nonhydrogenated rubber core and hydrogenated outer rubber layer, in accordance with the layer model. The addition of H(PS‐g‐NR) at 10 wt % as modifier in an acrylonitrile–butadiene–styrene (ABS) copolymer increased the tensile and impact strengths and the thermal resistance of the ABS blends, and to a greater extent than that provided by blending with NR or PS‐g‐NR. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Starch nanocrystals‐g‐polystyrene (StN‐g‐PS) was synthesized by free radical emulsion copolymerization of starch nanocrystals with styrene. The effect of polymerization conditions on grafting efficiency (GE) and grafting ratio (GR) were investigated. It was found that during graft copolymerization procedure both GE and GR increase with increasing monomer concentration and reaction time. As a result the high GE and high GR can be achieved. The good linear fit of the GR with ASt/AOH (the absorption strength ratio of aromatic ring peaks and hydroxyl group peaks) confirmed that during graft copolymerization, FTIR spectra can be used as a simple method for determining GR. X‐ray diffraction showed that the crystallinity of StN‐g‐PS decreased slightly with increasing GR. Grafted polystyrene side chains can improve the interface compatibility of starch nanocrystals with the hydrophobic polymer matrix. The mechanical properties of StN‐g‐PS/rubber nanocomposites can be obviously enhanced. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40571.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号