首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用机械合金化与放电等离子烧结工艺制备了体积分数为5%的Al35Ti15Cr20Mn20Cu10增强6061Al复合材料,重点研究了烧结温度对轻质高熵合金增强铝基复合材料微观组织及力学性能的影响。当烧结温度为540℃时,复合材料的致密度最大为98.6%。此时复合材料基体与增强体之间产生明显过渡层,界面结合以扩散结合为主。随着烧结温度升高,复合材料的屈服强度出现先上升后下降的趋势。当烧结温度为540℃时,复合材料的屈服强度达到186MPa,相比基体的屈服强度提升了约75%,复合材料的屈服强度接近Iso-strain模型的计算值。  相似文献   

2.
采用放电等离子烧结法制备了(TiC+TiB)/TC4复合材料,并研究了TiC和TiB增强相含量对钛基复合材料物相组成、微观结构和力学性能的影响。采用SPS温度为1 100℃原位合成制备出(TiC+TiB)/TC4复合材料,TiCp和TiBw呈准连续的网状结构分布在晶界处。样品按照TiC∶TiB为1∶1的比例来制备出增强相体积分数为x%(x=0、1、2.5、5、7.5)增强钛基复合材料。在增强相的体积分数为2.5%时复合材料的屈服强度、抗压强度最高,分别为1 264和1 803 MPa,工程应变由基体合金的30%增加至39.4%。  相似文献   

3.
采用SPS烧结技术制备了TiB/Ti-6Al-4V复合材料,研究TiB_2添加量对复合材料微观组织和力学性能的影响。结果表明,球磨过程中Ti-6Al-4V颗粒未发生明显变形,TiB_2分散镶嵌于Ti-6Al-4V颗粒表面。烧结后,基体组织从片状魏氏组织转变为近似等轴状组织,TiB增强相为棒状和晶须状,沿Ti-6Al-4V颗粒呈网状分布。随着TiB_2含量增加,增强相TiB数量增加,强度和硬度持续增加。在TiB_2含量为1%时复合材料的工程应变达到最大值,之后随TiB_2添加量增加,复合材料应变持续下降。  相似文献   

4.
采用粉末冶金法制备B_4C含量为33%的铝基复合材料毛坯,采用不同的二次加工工艺:挤压+轧制和热压+轧制;对采用两种不同的二次加工工艺成型的板材进行显微组织和力学性能对比。结果表明:采用挤压+轧制的B_4C/Al复合材料中没有大尺寸的显微缺陷,组织分布比较均匀、致密;且金相组织中增强相出现很明显的沿轧制方向线性分布的特征。采用挤压+轧制的B_4C/Al复合材料抗拉强度提高,但是屈服强度降低,屈强比减小,增加了复合材料作为承载结构时的安全性能。采用挤压+轧制的复合材料板材B_4C颗粒与基体的结合强度较高,B_4C颗粒断裂较少,断裂的方式基本是裂纹以穿晶或者沿着颗粒拔出的凹坑处扩展。  相似文献   

5.
通过混合粉末半固态成形法制备B_4C增强铝基复合材料。先将Al7075元素粉末在机械搅拌状态下逐渐添加到酒精溶液中,然后通过高能球磨将Al7075元素粉末与B_4C颗粒混合,最后将Al7075/B_4C混合粉末在半固体状态下冷压成型。研究基体颗粒尺寸(20、45和63μm)、增强相的体积分数(5%、10%和20%)和半固态压制压力(50和100 MPa)对复合材料的形貌、显微组织、密度、硬度、压缩强度和抗弯强度的影响。实验结果表明,当大的B_4C颗粒(45μm)分布在小的基体相颗粒(20μm)中时,材料的显微组织最均匀。基体颗粒尺寸大于增强相颗粒尺寸的复合材料中团聚量大于10%(体积分数)。团聚区域的液相难以渗透到孔隙中,降低复合材料的密度和强度。采用20μm Al7075和20%(体积分数)45μm B_4C粉末在100 MPa下压制的复合材料表现出最高的硬度值(HV 190)和抗压强度(336 MPa)  相似文献   

6.
利用放电等离子烧结(SPS)技术制备了HA/Ti-24Nb-4Zr生物复合材料,研究了不同退火温度对复合材料显微组织和力学性能(抗压强度、屈服强度、屈强比、压缩弹性模量)的影响。结果表明,烧结态复合材料主要由β-Ti相、少量初生α-Ti相及HA相组成;随着退火温度的升高,复合材料基体中β-Ti相含量增多且晶粒逐渐长大,针状次生α-Ti相在晶界处和晶内不断析出,HA相结构和含量变化不大;与烧结态相比,不同退火温度处理后的复合材料强度和弹性模量先略微上升后下降,而塑韧性呈不断提高趋势;复合材料在850 ℃退火处理后,抗压强度、屈服强度、屈强比和压缩弹性模量值分别为1507 MPa、1270 MPa、0.84和42 GPa,塑韧性得到明显改善,作为生物医用植入材料具有潜在的应用前景。  相似文献   

7.
以Si C、Ti O_2和B_4C为主要原料,采用原位合成法一步烧结制备高Ti B_2含量Ti B_2/Si C复合材料,利用维氏硬度计、电子万能试验机、伏安电阻计、金相显微镜和扫描电镜,研究Ti B_2含量对Ti B_2/Si C复合材料力学性能、体积电阻率与显微组织的影响。结果表明:随着Ti B_2含量的增加,复合材料的开口气孔率先降低后增加、抗折强度和断裂韧性均先增大后减小、维氏硬度逐渐增加、电阻率先快速下降后趋于稳定、Ti B_2颗粒的平均粒径逐渐增大。1950℃烧结后,Ti B_2含量为40%(质量分数)的复合材料性能最佳,其开口气孔率、抗折强度、断裂韧性和体积电阻率分别为0.56%、412 MPa、5.77 MPa·m~(1/2)和2.6×10~(-1)?·cm。  相似文献   

8.
采用粉末冶金原位合成法制备Al_3Ti、Al_3Zr金属间化合物增强铝基复合材料。采用X射线衍射、扫描电镜、光学显微镜、硬度测试和抗拉强度测试,研究烧结温度对复合材料显微组织和力学性能的影响。结果表明,在铝基体中生成了金属间化合物Al_3Ti和Al_3Zr增强相;随烧结温度从700℃上升到900℃,复合材料的硬度(HV)从85.7提高到118.1;经800℃烧结制备的复合材料表现出了较好的抗拉强度(140.71MPa)和屈服强度(40.5MPa)。  相似文献   

9.
开发一种高效液态搅拌铸工艺制备AA6061-31%B_4C复合材料。研究该工艺的关键参数,并对复合材料的显微组织和力学性能进行表征。结果表明,真空搅拌/浇铸、B_4C/Mg加料方式和铸锭冷却是AA6061-31%B_4C复合材料成功制备的关键参数。化学腐蚀检测结果证实复合材料中含有设计含量的B_4C;X射线荧光检测表明,复合材料基体中Mg和Si含量符合工业标准;扫描电镜和X射线衍射结果表明,B_4C颗粒均匀分布在基体中,颗粒之间为时效析出的Mg2Si相;拉伸结果表明,AA6061-31%B_4C复合材料的抗拉强度为340 MPa,比AA1100-31%B_4C复合材料的抗拉强度提高了112.5%,这归因于基体铝合金强度的大幅提高。  相似文献   

10.
纳米碳化硼(B_4C)颗粒与TA19钛合金球形粉末经球磨混合后,采用放电等离子烧结技术(SPS)成功制备出增强相呈准连续网状分布的B_4C/TA19复合材料。研究了增强体B_4C对复合材料显微组织和力学性能的影响。结果表明,B_4C颗粒的加入可以明显提高材料的抗拉强度,当B_4C颗粒的添加量为0.5%时,复合材料的抗拉强度从原始的986.8 MPa提高至1191.2 MPa,提升幅度达20.7%。当B_4C添加量为0.1%时,复合材料具有较为优异的强塑性匹配,抗拉强度为1065.3 MPa,相比TA19钛合金提高了8.0%,延伸率为13.4%。复合材料的强化机理主要为细晶强化及网状结构的界面强化。  相似文献   

11.
《铸造技术》2016,(5):848-852
采用半固态机械搅拌铸造法,制备了增强体平均粒径50 nm的Si C颗粒增强镁基复合材料(n-Si Cp/Mg9Al),分别对不同质量分数纳米颗粒、不同搅拌时间和不同搅拌温度时,复合材料的微观组织和力学性能进行了研究。结果表明,随着Si C含量的增加,合金基体组织先细化后又出现变粗的现象,适当延长搅拌时间能更有效地细化组织,在较低温度下搅拌可以更明显地细化复合材料的微观组织。合金抗拉强度随着Si C含量的增加先增加后降低,在Si C含量为1.5%时最好,为198 MPa。在含量为2%时又有所降低,但是高于不加Si C时。搅拌时间为15 min时,复合材料的屈服强度、抗拉强度较之基体分别提高了12.8%、22%,断后伸长率由基体合金的2%提升到4%。继续延长搅拌时间到30 min,材料的室温拉伸性能出现明显恶化。不同搅拌温度下Si Cp/Mg9Al纳米复合材料与铸态Mg9Al合金相比其室温拉伸性能有明显提高,搅拌温度为600℃的Si Cp/Mg9Al纳米复合材料的室温拉伸性能最好,其屈服强度、抗拉强度和断后伸长率分别为106 MPa、155 MPa和4%。  相似文献   

12.
采用机械合金化结合热压烧结技术分别在1400、1500、1600和1700℃下制备Mo-10Si-8B-0.6%La_2O_3合金,研究了不同烧结温度对合金微观组织和力学性能的影响。结果表明,随着烧结温度的升高,合金内金属间化合物Mo_3Si相和Mo_5Si B_2相含量增多,导致合金的韧性降低,强度升高,但Mo_3Si和Mo_5Si B_2相弥散分布于α-Mo基体中同时也能起到细化晶粒尺寸的作用,从而提高合金的力学性能。烧结温度为1400℃时,合金中α-Mo含量最多,金属间化合物含量较少,此时合金的室温抗弯强度最高,达到238 MPa,但高温压缩强度仅为2247 MPa;当烧结温度为1700℃时,合金中的金属间化合物相含量达到最高值,此时合金的高温压缩强度为2485 MPa,室温抗弯强度则低至173 MPa。  相似文献   

13.
以稀土氧化物CeO_2为烧结助剂,采用放电等离子(SPS)烧结工艺制备了B_4C基复相陶瓷。研究了CeO_2添加量(质量分数,%)对B_4C基体的致密化和烧结体硬度的影响,并与纯B_4C样品进行对比。借助X射线衍射和扫描电镜分析了复合材料的物相组成和微观结构。结果表明,CeO_2粉体的添加可以显著提高SPS条件下碳化硼的烧结性能。生成相CeB_6填充在B_4C晶粒之间,提高了制品的相对密度。当CeO_2添加量为4%时,在烧结压力35 MPa和1750℃下烧结,样品的相对密度最高(96.7%),其洛氏硬度可达到89.6(HRA)。  相似文献   

14.
采用机械搅拌和烧结工艺制备了GNPs/Al复合材料,实现了无损伤GNPs的完全铺展及在铝基体中均匀弥散分布。研究了GNPs对复合材料粉末冷压-烧结致密化行为的作用机制,阐明了GNPs对复合材料强度和塑性的作用机理,探讨了烧结时间对GNPs/Al复合材料力学性能的影响规律。结果表明,GNPs含量低于0.5%,烧结态GNPs/Al复合材料相对密度达到98%以上。烧结态Al-0.5wt.%GNPs屈服强度达到204MPa,相对于纯铝提高了18.6%。以Al-0.5wt.%GNPs为例,烧结6h后,复合材料硬度为61.5HV,屈服强度为173MPa,压缩应变40%时未发生明显破坏。  相似文献   

15.
采用放电等离子体烧结制备了双相多尺度镀镍碳纤维和碳化锆颗粒增强铝基复合材料(Cf(Ni)-Zr C/2024Al)。为了提高碳纤维和基体的界面结合强度,对碳纤维进行了化学镀镍,研究了烧结工艺对复合材料的密度、显微硬度和拉伸强度的影响。结果表明,在烧结温度为480℃,烧结压力为30 MPa,保温时间为10 min时,可以得到结构致密,性能优异的铝基复合材料。复合材料的密度仅为2.71 g/m~3,显微硬度、拉伸强度和伸长率分别为105.6 HV、330 MPa和10.2%,力学性能均高于2024Al合金。力学性能的提高归因于表面化学镀碳纤维和基体良好的界面结合、ZrC的网状分布结构、以及增强相和基体热膨胀系数不匹配导致的位错增强。  相似文献   

16.
采用热压烧结在1680℃下制备得到了(100-x)B_4C-x Ti(x=0~40)(质量分数,%)陶瓷,并研究了Ti(x=0~40)添加量对B_4C陶瓷微观形貌及力学性能的影响。结果表明:Ti元素可以促进B_4C陶瓷的烧结,其相对密度随Ti含量增加先增大后趋于稳定,当Ti添加量达到40%时,样品相对密度约为99.5%。XRD结果表明,样品中除B_4C和未反应的Ti之外,还有Ti C和Ti B_2相出现,且随Ti含量增加,两者的衍射峰逐渐增强;随Ti添加量增加,样品的抗弯强度、硬度以及断裂韧性均增大,在Ti添加量为40%时,分别达到481 MPa、8280 MPa、18.55 MPa·mm~(1/2)。分析其原因认为,由于Ti与B_4C发生界面反应,在界面处生成Ti C和Ti B_2相过渡层,联结了B_4C基体与Ti,起到了桥联增韧的作用,使材料的力学性能得到改善。  相似文献   

17.
以A357-Na_2B_4O_7-K_2ZrF_6体系与A357-KBF_4-K_2ZrF_6体系合成原位颗粒增强A357铝基复合材料。结果表明,增强相含量小于1.5%,仅合成Al_3Zr一种增强相,增强相含量为2%时,ZrB_2与Al_3Zr增强相同时合成;A357-K_2ZrF_6-KBF_4体系合成原位颗粒增强复合材料时ZrB_2颗粒为增强相;A357-Na_2B_4O_7-K_2ZrF_6体系合成复合材料的抗拉强度随增强相含量的增加呈先增加后减小的趋势,最大值为182 MPa,是基体的1.17倍;反应体系A357-K_2ZrF_6-KBF_4合成复合材料抗拉强度随增强相含量增加而呈上升趋势,最大值为192 MPa,是基体的1.24倍;两种复合材料断口上存在大量韧窝,表明断裂方式均为塑性断裂。  相似文献   

18.
通过放电等离子烧结(SPS)制备ACNs(无定形碳纳米颗粒)/Ti复合材料,并采用扫描电子显微镜、X射线衍射仪、光学显微镜以及电子万能试验机对不同烧结温度下ACNs/Ti复合材料的显微组织、相组成及力学性能进行表征。结果表明,较低烧结温度(800℃)下,未反应的ACNs虽然会对复合材料的强度有所贡献,但其与基体的界面结合较弱,会导致复合材料塑性严重下降。较高烧结温度(1000℃)下,与基体充分反应的TiC颗粒过度生长后尺寸较大,这一现象会造成材料强度下降。当烧结温度为900℃时,ACNs与Ti基体完全反应生成TiC颗粒,这种细小弥散的TiC沿着基体颗粒周围分布形成了准连续网状结构,此时ACNs/Ti复合材料具有最佳的强塑性匹配,其抗拉强度、屈服强度、延伸率分别为648.19 MPa、551.02 MPa、36.19%。  相似文献   

19.
采用机械合金化和放电等离子烧结的方法制备出超细晶CoCrFeMnNiGd0.15合金,研究了CoCrFeMnNiGd0.15高熵合金的组织与性能。结果表明,其组织为多相结构,基体为FCC固溶体相,析出相为稀土氧化物(Gd2O3)和富Gd、Ni、Mn的四方结构相。随着烧结温度的提高,析出相的含量不断增加且尺寸不断增大,合金的压缩屈服强度不断下降而塑性则不断上升。在900℃烧结时材料具有最优的综合力学性能,其压缩屈服强度(σ0.2)、抗压强度(σmax)、断裂时的塑性应变(εp)和维氏硬度分别达到1662 MPa、2518 MPa、30.6%和458 Hv。  相似文献   

20.
利用机械合金化(MA)和真空热压烧结(HP)的方法,以Ti粉、石墨粉和灰铸铁粉为初始原料,原位合成了TiC颗粒增强的铁基复合材料。利用XRD和FESEM (附带EDS)研究了复合材料的物相成分、微观结构和增强体的分布情况。利用密度测试仪、洛氏硬度计、电子万能试验机和销-盘式两体磨料磨损试验机分别测试了复合材料的密度、硬度、压缩应力-应变和抗两体磨料磨损性能。结果表明:在70 MPa压力下于1200℃烧结60 min制备的原位TiC颗粒增强的铁基复合材料只含TiC和α-Fe,并且TiC颗粒弥散均匀分布于Fe基体中。当原位TiC的含量为40%(质量分数)时,该复合材料的综合性能最佳,其相对密度和硬度分别达到96.54%和34 HRC (未热处理);同时压缩性能也最佳,其压缩弹性模量、屈服强度、最大压缩强度和断裂应变分别为19.6 GPa、420 MPa、605 MPa和6.1%;其具有最好的耐磨性能,当载荷为1.5 kg时,其相对耐磨性是纯灰铸铁的2.67倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号