首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以Si粉和Fe3Si-Si3N4为原料,在高纯N2气氛下制备Si3N4/Fe3Si-Si3N4复合材料。氮化烧成后Si3N4结合Fe3Si-Si3N4复合耐火材料试样中物相为Si3N4、Fe2Si、FeSi和Si2N2O。其中Si2N2O含量约6%,且在试样中心和外部分布不均匀。Fe3Si-Si3N4原料是Fe3Si和Si3N4两相共存材料,热力学评估和材料的微观结构分析表明,Fe3Si和部分Si粉形成新的低熔点硅铁合金,使靠近试样表面部位的部分开口气孔被液态硅铁合金所堵塞或填充,试样中心部位的微量氧不能迁移至外部,N2中微量氧将Fe3Si-Si3N4原料中Si3N4氧化,形成Si2N2O包裹,导致试样中心Si2N2O含量比边缘部位高。Si2N2O的形成使体系氧分压降至Si3N4稳定存在的氧分压时,Si粉直接氮化形成柱状Si3N4,而非纤维状Si3N4,同时在1 450℃氮化烧成条件下,Fe的存在促进了α-Si3N4向β-Si3N4的转变。  相似文献   

2.
以硅粉(Si)为起始原料, 氧化钇(Y2O3)为烧结助剂, 利用干压成型工艺制备出不同气孔率的多孔硅坯体, 通过反应烧结得到高强度多孔氮化硅(Si3N4)陶瓷. 研究了Y2O3添加量在不同升温制度下对于氮化率的影响, 以及1500~1750℃后烧结对多孔材料强度的影响. 结果表明: 添加9%Y2O3的样品具有较高的氮化率, 主要是Y2O3与Si粉表面的SiO2在较低的温度下反应生成了Y5Si3O12N. 在不同的反应条件下可得到气孔率为30%~50%, 强度为160~50MPa的样品. 在1750、 0.5MPaN2气压下对样品进行后处理, α-Si3N4完全转变成柱状β-Si3N4, 晶型转变有利于强度提高,气孔率为46%的多孔Si3N4其强度可达140MPa.  相似文献   

3.
Si3N4-BN-SiC复合材料以其良好的力学性能和抗氧化性能而具有良好的工程应用前景。本研究以Si、Si3N4稀释剂、B4C和Y2O3为原料, 采用燃烧合成法成功制备了Si3N4-BN-SiC复合材料。通过Si、B4C和N2气之间的反应, 在Si3N4陶瓷中原位引入BN和SiC, 制备的Si3N4-BN-SiC复合材料由长棒状的β-Si3N4和空心球形复合材料组成。实验研究了空心球微结构的形成机理, 结果表明, 生成的SiC、BN颗粒及玻璃相覆盖在原料颗粒上, 当原料颗粒反应完全时, 形成空心球形微结构。并进一步研究了B4C含量对Si3N4-BN-SiC复合材料力学性能的影响。原位引入SiC和BN在一定程度上可以提高复合材料的力学性能。当B4C添加量为质量分数0~20%时, 获得了抗弯强度为28~144 MPa、断裂韧性为0.6~2.3 MPa·m 1/2, 杨氏模量为17.4~54.5 GPa, 孔隙率为37.7%~51.8%的Si3N4-BN-SiC复合材料。  相似文献   

4.
采用磁控溅射的方法制备了Si3N4/FePd/Si3N4三层膜, 研究了非磁性材料Si3N4作为插入层对磁记录FePd薄膜结构与磁性能的影响。结果表明, 热处理后Si3N4分布在FePd纳米颗粒之间, 抑制了FePd晶粒的生长, 与纯FePd薄膜相比, Si3N4/FePd/Si3N4薄膜的颗粒明显得到细化; 通过添加Si3N4层, FePd薄膜的晶体学参数c/a从0.960减小到0.946, 表明Si3N4可以有效促进FePd薄膜的有序化进程, 同时提升了矫顽力和剩磁比, 分别提高到249 kA/m、0.86; 随着600℃退火时间的进一步延长, 添加Si3N4的薄膜磁性没有迅速下降, 在较宽的热处理时间范围内磁性能保持在比较高的水平, 提高了抗热影响的能力。Si3N4作为插入层对FePd薄膜的磁性能具有较大的提升作用, 这对磁记录薄膜的发展具有重要意义。  相似文献   

5.
以Si粉、Al粉和Al2O3粉为原料压制成条样, 在1650~1850 K氮气和埋Si3N4颗粒气氛下分别合成了β-SiAlON晶须、带状和柱状晶, 并系统研究了一维β-SiAlON材料可控合成条件, 进而结合热力学分析了一维β-SiAlON材料的生长机制。结果表明: 以Si粉、Al粉和Al2O3为原料, 在氮气(纯度99.9%)和埋Si3N4颗粒气氛下在1650~1850 K保温6 h, 可以合成不同形貌的一维β-SiAlON材料。生长温度是一维β-SiAlON材料形貌控制的关键因素。生长温度为1650 K时, 合成了β-SiAlON晶须, 晶须直径200~400 nm, 长径比100~1000; 生长温度在1700~1800 K时, 可以合成β-SiAlON带状晶体, 厚度为200 nm, 宽度为1~4 μm, 长宽比在10~20之间; 生长温度升高至1800 K时, 出现大量柱状晶体。结合晶须显微结构形貌和热力学分析, β-SiAlON晶须的生长机制为气-固(VS)生长机制。  相似文献   

6.
BN含量对多孔BN/Si3N4陶瓷结构和性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
以氮化硅(Si3N4)为基体, 氮化硼(BN)为添加剂, 叔丁醇为溶剂, 采用凝胶注模成型与无压烧结工艺(温度为1750 ℃、保温时间为1.5 h、流动N2气氛), 成功制备出具有一定强度和低介电常数的多孔BN/Si3N4陶瓷。在浆料中初始固相含量固定为15%体积分数的基础上, 研究了BN含量对多孔Si3N4陶瓷材料的气孔率、物相组成及显微结构的影响, 分析了抗弯强度、介电常数与结构之间的关系。结果表明, 通过改变BN含量可制备出气孔率为55.1%~66.2%的多孔Si3N4陶瓷; 多孔BN/Si3N4复合陶瓷的介电常数随着BN含量的增加而减小, 为3.39~2.25; 抗弯强度随BN含量提高而有所下降, BN质量分数为2.5%时, 抗弯强度最高, 为(74.8±4.25) MPa。  相似文献   

7.
本研究以Al2O3和Nd2O3为烧结助剂, 采用热压烧结法制备Si3N4陶瓷, 系统研究了添加BaTiO3对Si3N4陶瓷力学和介电性能的影响。研究结果表明, 随着BaTiO3含量的增加, 相对密度、抗弯强度和维氏硬度都随之降低, 而断裂韧性有所升高; 即使添加5wt%~20wt%的BaTiO3, Si3N4陶瓷的抗弯强度依然可以保持在600 MPa以上。Si3N4陶瓷的介电常数可以提高到9.26~11.50, 而介电损耗保持在10-3量级。在Si3N4陶瓷中未检测到BaTiO3结晶相, 可以认为Si3N4陶瓷介电常数的提高主要来源于烧结过程中形成的TiN。这些结果有助于拓展Si3N4陶瓷的应用领域。  相似文献   

8.
用氮化硼纳米管(BNNT)增强氮化硅(Si3N4)陶瓷制备了BNNT/Si3N4复合材料, 利用三点弯曲强度及单边切口梁(SENB)法测定了BNNT/Si3N4复合材料的弯曲强度和断裂韧性。通过SEM观察了BNNT/Si3N4复合材料微观形貌。基于BNNT增强Si3N4陶瓷复合材料的裂纹扩展阻力计算公式, 构建了BNNT对Si3N4陶瓷裂纹屏蔽区的裂纹扩展阻力的数学模型。用该模型的计算结果与Si3N4陶瓷的裂纹扩展阻力进行了对比。结果表明: BNNT/Si3N4复合材料的弯曲强度和断裂韧性明显高于Si3N4陶瓷, 说明BNNT对Si3N4陶瓷的裂纹扩展有阻力作用, 摩擦拔出是Si3N4陶瓷抗裂纹扩展能力提高的主要原因; BNNT对Si3N4陶瓷有明显的升值阻力曲线行为。通过有限元模拟裂纹尖端应力分布, 发现BNNT使Si3N4陶瓷裂纹尖端的最大应力转移到纳米管上, 而且BNNT降低了Si3N4陶瓷裂纹尖端的应力, 对Si3N4陶瓷尖端的裂纹有屏蔽作用, 从而提高了Si3N4陶瓷的裂纹扩展阻力。  相似文献   

9.
采用高温固相法制备Si3N4掺杂氮化Sr2.99SiO5-6xN4x:0.01Eu2+荧光粉。采用XRD、EDS和SEM测试结果表明: N3-进入Sr3SiO5基质晶格中取代部分O2-离子, 形成了单一相Sr2.99SiO5-6xN4x:0.01Eu2+固溶体。PL&PLE荧光光谱测试结果显示, Sr2.99SiO5-6xN4x:0.01Eu2+荧光粉在344nm紫外光的激发下发射出红橙光, 属于Eu2+离子典型的 4f65d1→4f7电子跃迁。随着N浓度的增加, Sr2.99SiO5-6xN4x:0.01Eu2+荧光粉发射光谱和激发光谱的强度明显增强。热稳定性测试结果表明, Si3N4掺杂氮化能够显著提高Sr3SiO5:Eu2+荧光粉的热稳定性。通过Arrhennius模型拟合结果表明横向穿越过程(crossover)引起的Sr3SiO5:Eu2+荧光粉氮化前后的温度猝灭。  相似文献   

10.
多孔氮化硅陶瓷兼具有高气孔率和陶瓷的优异性能, 在吸声减震、过滤等领域具有非常广泛的应用。然而, 目前常规的制备方法如气压/常压烧结、反应烧结-重烧结以及碳热还原烧结存在烧结时间长、能耗高、设备要求高等不足, 导致多孔Si3N4陶瓷的制备成本居高不下。因此, 探索新的快速、低成本的制备方法具有重要意义。近年来, 采用自蔓延高温合成法直接制备多孔氮化硅陶瓷展现出巨大潜力, 其可以利用Si粉氮化的剧烈放热同时完成多孔氮化硅陶瓷的烧结。本文综述了自蔓延反应的引发以及所制备多孔氮化硅陶瓷的微观形貌、力学性能和可靠性。通过组分设计和工艺优化, 可以制备得到氮化完全、晶粒发育良好、力学性能与可靠性优异的多孔氮化硅陶瓷。此外还综述了自蔓延合成多孔Si3N4陶瓷晶界相性质与高温力学性能之间的关系, 最后展望了自蔓延高温合成多孔Si3N4陶瓷的发展方向。  相似文献   

11.
毛祖莉  杨丽  伍杰  周术 《材料保护》2022,55(3):41-46
为了提高碳/碳复合材料表面SiC涂层的耐磨性,采用包埋法和氮化处理制备SiC/Si3N4涂层。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析仪(EDS)及摩擦磨损试验,分别评价SiC涂层与SiC/Si3N4涂层的表面形貌、物相组成、磨损形貌及摩擦磨损性能,并研究涂层显微组织结构与磨损机理之间的联系。结果表明:SiC/Si3N4涂层由Si3N4相、SiC相和C相组成,涂层平整且致密;SiC/Si3N4涂层的摩擦系数低于0.05且更稳定;SiC涂层高摩擦系数值的主要磨损机制是黏着磨损和磨料磨损;SiC/Si3N4涂层中形成了一层较薄的润滑膜,并在摩擦磨损的后续阶段降低摩擦系数。Si3N4相的引入可以有效改善SiC涂层的表面结构,使得SiC涂层摩擦系数更小且更稳定,从而提高...  相似文献   

12.
以廉价的二氧化硅、炭黑和硅粉为起始原料, 利用碳热还原-反应烧结法制备了高气孔率、孔结构均匀的多孔氮化硅陶瓷, 考察了原料中硅粉含量对多孔氮化硅陶瓷微观组织和力学性能的影响。XRD分析表明烧结后的试样成分除了少量的α-Si3N4相和晶间相Y2Si3O3N4外, 其余都是β-Si3N4相; SEM分析显示微观组织由棒状β-Si3N4晶粒和均匀的孔组成。通过改变硅粉的含量, 制备了不同气孔率, 力学性能优异的多孔氮化硅陶瓷。  相似文献   

13.
本工作研究了Si3N4-ZrO2-La2O3三元系统的相关系, 采用X射线衍射仪分析了物相组成。结果表明, 在1500 ℃/1 h/N2气氛条件下固相反应, 生成了ZrN和La4.67Si3O13、La5Si3NO12、La4Si2N2O7、LaSiNO2、La2Zr2O7等镧盐化合物的共存相。由于生成的氮化锆和硅酸镧等化合物不在Si3N4-ZrO2-La2O3三元系统内, 需引入SiO2测定SiO2-La2O3-ZrO2三元分系统相图, 进而扩大成Si3N4-ZrO2-La2O3-SiO2-ZrN五元系统, 本工作绘制并提出了此五元系统相图, 且提出了1570 ℃时SiO2-La2O3-ZrO2三元分系统实验相图。此外, 验证了La2O3在Si3N4-ZrO2-La2O3三元系统反应中促进Si3N4-ZrO2取代反应生成ZrN的作用。  相似文献   

14.
为满足高温条件下高分子复合涂层的应用需求,推进高分子有机复合涂层在高温防护领域的实际应用,选择聚酰亚胺(PI)为树脂基体,通过加入纳米Si3N4改性增强其耐热性,研究硅烷偶联剂KH550与不同含量的Si3N4对涂层表面状态以及耐热性能的影响。实验结果表明:加入10%(质量分数)Si3N4的改性复合涂层的玻璃化转变温度(Tg)达到495℃,高于纯PI涂层的Tg(483℃)。加入KH550后,一方面KH550在Si3N4表面引入氨基官能团使其与PI分子链交联,另一方面KH550直接与PI分子相互作用提升涂料的黏度,使Si3N4分散性及涂层与基体的结合力均有显著提升。此外,分别制备不同含量Si3N4的PI复合涂层并进行比较,发现10%Si3N4的...  相似文献   

15.
随着科技的不断发展, Si3N4陶瓷在航空、机械、生物医疗等高新领域发挥着越来越重要的作用。本工作采用包覆助烧剂Al2O3-Y2O3后的Si3N4粉体为原材料, 利用数字光处理(Digital light processing, DLP)技术成功制备出Si3N4陶瓷, 并系统研究了浆料固相含量对Si3N4陶瓷浆料、DLP成形Si3N4陶瓷素坯和陶瓷性能的影响。研究表明, 浆料固相含量低于40.0% (体积分数)时, 浆料在30 s-1剪切速率下的粘度均小于2 Pa·s, 可用于DLP成形。在这种情况下, 浆料的单层固化深度随浆料固相含量的增加而减小。随着浆料固相含量的增大, DLP成形Si3N4陶瓷的相对密度和抗弯强度先升高后降低。固相含量为37.5% (体积分数)的样品获得最大的相对密度和抗弯强度, 分别为89.8%和162.5 MPa, 较固相含量为32.5% (体积分数)的样品分别提升了10%和16%。本研究通过对陶瓷浆料性能的优化, 提升了DLP成形Si3N4陶瓷的性能, 为Si3N4等非氧化物陶瓷光固化成形奠定了实验基础。  相似文献   

16.
以凹凸棒石(ATP)为载体, 通过原位沉积, 结合冷冻干燥、程序焙烧工艺在其表面负载不同质量分数的类石墨相氮化碳(g-C3N4)薄层材料, 制备系列ATP/g-C3N4复合材料用于电催化析氧反应, 产物标识为ATP/g-C3N4-w (质量分数w = mATP: (mATP + mg-C3N4)=0.33、0.40、0.50、0.67), 并研究在0.1 mol/L KOH的电解液中的电催化析氧性能。结果表明: g-C3N4薄层通过Si-O-C键牢固负载于凹凸棒石表面, 从而有效调变g-C3N4表面的电子层结构, 提供更多的催化活性位点。电催化析氧测试的结果表明: ATP/g-C3N4-0.50具有最优的析氧催化性能, 在10 mA/cm 2电流密度下其析氧过电位为410 mV, 塔菲尔斜率为118 mV/dec, 并表现出优异的析氧稳定性。  相似文献   

17.
用凝胶注模和压力铸造两步法制备具有双连续结构的Si3N4/1Cr18Ni9Ti复合材料并分析其物相组成、宏观和微观结构,研究了材料的冲蚀率与攻角、流速、含沙量以及时间的关系。结果表明,与1Cr18Ni9Ti材料相比,Si3N4/1Cr18Ni9Ti复合材料具有双连续结构,界面结合良好;其冲蚀率随着攻角变化的幅度小,冲蚀率与流速之间的关系由1Cr18Ni9Ti材料的线性关系转变为指数关系(E∝V0.67),且随着时间的延长冲蚀率降低;冲蚀率与含沙量之间的关系仍呈线性。具有双连续结构的Si3N4/1Cr18Ni9Ti复合材料,具有更加优异的耐冲蚀性能。  相似文献   

18.
用聚碳硅烷为先驱体制备SiC/Si3N4纳米复相陶瓷   总被引:6,自引:1,他引:5       下载免费PDF全文
采用聚碳硅烷(PCS) 为先驱体, 利用原位生长法制备SiC/Si3N4 纳米复相陶瓷, 其室温弯曲强度和断裂韧性达到了637M Pa 和8. 10M Pa·m1/2 。研究了材料微观结构的形成及断裂机理,指出在微观结构的形成过程中, 控制SiC 纳米微晶的生成和B-Si3N4 柱状晶的生长是关键, 而增韧补强的主要原因在于形成了晶内型结构和长径比大(大于7. 5) 的Si3N4 柱状晶, 从而改变了断裂机理。   相似文献   

19.
以聚多巴胺(PDA)修饰的Ti3C2Tx为基体, 高锰酸钾(KMnO4)为锰源, 十六烷基三甲基溴化铵(CTAB)和聚乙二醇(PEG)为表面活性剂, 采用液相共沉淀法及水热法, 制备出四种不同形貌的Ti3C2Tx@MnO2复合材料。通过FE-SEM、XRD、Raman、FT-IR、BET及电化学测试, 系统研究了纳米碎片状(δ-MnO2)、米粒状(α-MnO2)、纳米花球状(α-MnO2)以及纳米线状二氧化锰(α-MnO2)对Ti3C2Tx物相结构、电化学活性和电荷存储机理的影响。结果表明: 纳米线状MnO2复合改性的Ti3C2Tx比表面积最大、电荷转移阻抗最小且循环稳定性最优, 在扫描速率为2 mV?s -1时的比容量达340.9 F?g -1, 比使用CTAB时高出近2.5倍。  相似文献   

20.
氮化硅(Si3N4)粉体极易氧化,表面氧化硅层氧含量过高会对Si3N4陶瓷的力学性能和导热性能产生不利影响。在球磨法细化Si3N4粉体过程中,分别选取去离子水、无水乙醇和质量分数为20%的氢氧化钠(NaOH)溶液作为3种球磨介质,研究不同球磨介质对细化后的Si3N4纳米粉体的颗粒粒径和表面氧化硅层氧含量的影响;采用X射线衍射分析仪、激光粒径仪、场发射扫描电子显微镜、高分辨透射电子显微镜、氧氮分析仪、傅里叶变换红外光谱仪和X射线光电子能谱仪分析Si3N4纳米粉体的物相组成、粒径分布、微观形貌、表面氧化硅层的氧含量、化学基团和化学键种类及浓度;探讨碱液法球磨制备表面氧化硅层的氧含量较低的Si3N4粉体的机制。结果表明:以NaOH溶液为球磨介质时,Si3N4粉体先与水反应生成非晶氧化硅层,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号