首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
李周  肖翀 《无机材料学报》2019,34(3):294-300
选取BiCuSeO双亚层超晶格热电材料为研究对象, 通过La、Ag单掺杂和双掺杂两种方式等价取代[Bi2O2]2+亚层和[Cu2Se2]2-亚层中的Bi、Cu位点, 并对其热电输运性能和缺陷调控机理进行研究, 结果发现:La-Ag双掺杂可以结合两种单掺杂的优势, 在适度提升载流子浓度的同时保持与纯样相当的载流子迁移率, 从而使电导率得到大幅度的提升。与此同时, La-Ag双掺杂可以引发能带收敛效应, 有助于同步获得较高的载流子迁移率和Seebeck系数, 最终使PF得到了优化; 另一方面, 由于点缺陷对载热声子的强烈散射作用, 样品的晶格热导率和总热导率进一步降低, 使最终ZT值也得到了优化。结果, La-Ag双掺杂样品的ZT值在755 K下达到0.46, 高于原始纯样(ZT=0.27)和单掺杂样品。该项研究表明La、Ag异层等价双掺杂策略可以实现BiCuSeO热电输运参数的协同调控与优化。  相似文献   

2.
研究了制备p型AgSn18SbTe20无铅热电材料的机械合金化(MA)结合放电等离子烧结(SPS)工艺, 调查了MA过程中球磨时间和SPS温度对材料电热传输性能和热电优值的影响, 分析了样品的物相和显微结构。研究表明, 适当延长球磨时间和降低烧结温度, 可以有效提高材料的热电性能。优化制备条件可以实现59%的性能提升, 最佳条件(球磨12 h、SPS温度743 K)下制备的样品ZT值在723 K达到0.62。  相似文献   

3.
高通量材料实验旨在利用较少的实验次数快速获得成分-物相-结构-性能之间关系, 筛选出组分最优的材料体系, 目前已在超导材料、荧光材料以及巨磁阻材料等方面有较多应用。热电材料是可以实现热能和电能直接相互转换的功能材料, 在温差发电和废热利用等领域有着重要的应用价值, 但热电材料的传统实验制备与表征方法存在着实验周期长和效率低等问题。因此, 将高通量实验的方法和理念引入新型热电材料的研发和优化具有重要的理论和实际意义。本文主要总结和梳理了现有在热电材料实验研究中具有较好应用前景的高通量实验制备与表征技术, 包括高通量样品制备、成分-结构高通量表征、电-热输运性能高通量表征等, 并分析了各高通量实验技术在实验热电材料研究中的优势和局限性, 希望为今后热电材料高通量实验优化和筛选提供一定的参考。  相似文献   

4.
SnSe是一种潜在的极具应用前景的热电材料。采用机械合金化结合放电等离子烧结的方法制备了Ag掺杂的Sn1-xAgxSe (0.005≤x≤0.03)多晶块体热电材料, 并借助XRD、SEM、电热输运测试系统研究了其物相组成、微结构与电热输运性能。XRD分析结果表明, 少量Ag(0.005≤x≤0.01)掺杂仍然能够成功制备出单相斜方结构SnSe化合物, 但随着Ag掺杂量的增加, 基体中出现SnAgSe2第二相, 且第二相含量逐渐增加。掺杂Ag大幅度提高了载流子浓度, 从而使材料的综合电输运性能(功率因子)显著提高, 当Ag掺杂量x=0.02时, 功率因子提高至4.95×10-4 W/(m·K2), 较未掺杂SnSe样品提高了36%。尽管掺杂样品的热导率均有小幅升高, 无量纲热电优值(ZT)仍获得一定改善。当Ag掺杂量x=0.02时, Sn0.98Ag0.02Se成分样品具有较高的热电优值, 并在823 K附近达到最高值0.82。  相似文献   

5.
固溶结合掺杂是优化材料热电性能的有效途径。本研究采用固相反应结合等离子体活化烧结成功合成了一系列单相的Mo1-xWxSeTe(0≤x≤0.5)固溶体及其Nb掺杂产物。热电输运研究表明, W固溶结合Nb掺杂显著提高了Nb2yMo0.5-yW0.5-ySeTe固溶体的载流子浓度、载流子迁移率、电导率和功率因子, 适当降低了样品的晶格热导率, 进而显著提高了材料的热电优值ZT。随着Nb掺杂量的增加, 掺杂引入的离散能级转变为连续的杂质能带, 同步提升了载流子浓度和载流子迁移率。取向性研究发现, 由于在平行方向晶格热导率较低, Nb2yMo0.5-yW0.5-ySeTe固溶体在平行烧结压力方向的ZT略优。最优组分Nb0.03Mo0.485W0.485SeTe在垂直于烧结压力和平行于烧结压力方向获得了最高ZT, 分别达到0.31和0.36(@823 K), 是目前MoSe2基热电材料获得的最好结果之一。后续通过优化掺杂元素来改善Seebeck系数和功率因子, 将有望进一步提升MoSe2基化合物的ZT。  相似文献   

6.
PbTe在中温区热电材料中广受关注, 然而, n型PbTe因其较低的载流子浓度和复杂的能带结构, 其热电性能难以大幅提升。本研究通过分步式添加PbS、Sb2Se3组元以调控n型PbTe基体的热、电传输性能。研究发现, PbS与Sb2Se3组元可分别提升功率因子和降低热导率。通过扩大带隙、增加点缺陷、第二相弥散等途径可改善能带, 加剧散射, 从而有效提升热电优值ZT。其中(PbTe)0.94(PbS)0.05(Sb2Se3)0.01表现出最佳的热电性能, 700 K时ZT最大值为1.7, 且ZT平均值较PbTe基体显著提高, 这表明分步式双组元调控可为改善其它材料体系的热电性能提供技术途径。  相似文献   

7.
冯波  李光强  张城诚  李亚伟  贺铸  樊希安 《材料导报》2017,31(21):24-31, 45
BiCuSeO基热电材料由于具有较低的热导率和较高的Seebeck系数,热电性能优异,且原料储藏丰富、价格低廉、安全无毒,被认为是一种具有潜在应用前景的新型热电转换材料。首先介绍了BiCuSeO基材料的晶体结构、电子结构、热电性能等基本特征,随后综述了近年来国内外关于BiCuSeO基热电材料的研究进展,评述了提高其热电性能的手段,包括Na、Ag、Mg、Ca、Sr、Ba等低价元素掺杂,铜空位,双空位,带隙调整,晶粒细化,织构化和调制掺杂等。通过电热输运特性的协同调控,可使其ZT值从未掺杂样品的0.4左右提高到1.5。最后从实际应用的角度出发提出了今后BiCuSeO基热电材料的研究方向及研究重点。  相似文献   

8.
基于塞贝克效应的热电转换技术, 在大量分散的低品位废热转换电能方面有着不可替代的优势。以热电优值ZT为性能指标的热电材料研发成为新能源材料领域研究的热点之一。近年来, 大量新型中温热电材料被相继发现, 然而新型热电材料的产业化应用, 尤其是在温差发电方面的进展尤为缓慢, 其中热电器件中的材料界面问题严重制约了热电转换技术的应用进程。本文从Bi2Te3型器件在温差发电方面所遇到的技术瓶颈为例, 阐述热电器件中的界面关键技术, 并归纳出电极接触界面需要综合考虑低的界面电阻、高的结合强度、以及好的高温稳定性能。然后总结了与Bi2Te3、PbTe、CoSb3基三种热电材料相关的界面材料研究进展。  相似文献   

9.
高熵合金因其多种合金元素以等原子比或近等原子比的组合而具有高熵效应、严重的晶格畸变、缓慢扩散以及特殊而优异的材料性质等特点,在各个领域引起极大的关注。其高强度和硬度、抗疲劳性、优异的耐腐蚀性、耐辐照性以及接近零的热膨胀系数、催化响应、热电响应及光电转换等特性,使高熵合金在许多方面有潜在的应用。高通量计算及机器学习技术迅速成为探索高熵合金巨大成分空间和综合预测材料性能的有力手段。本文介绍高通量计算与机器学习的基本概念,论述第一性原理计算、热动力学计算与机器学习在高熵合金研究中的优势,并总结它们在高熵合金成分筛选、相与组织计算以及性能预测等方面的应用研究现状。最后提出该领域目前存在的问题,并提供解决思路与未来展望,包括开发适用于高熵合金的第一性原理计算与机器学习工具、构建高质量高熵合金数据库、将高通量计算与机器学习相融合对高熵合金的力学及服役性能进行全局优化等。  相似文献   

10.
正中科院上海硅酸盐研究所陈立东研究团队完成的"热电材料的多尺度微观结构调控与性能优化"项目获得2013年国家自然科学奖二等奖。业内专家认为,该项目实现了电热输运协同调控和热电材料高性能化,获得了多种高性能热电材料,并且已应用于热电器件及应用  相似文献   

11.
热电材料可有效回收废热并将其转化为电能, 然而转换效率受复杂耦合热电参数的限制。高效热电材料需要具有优异的电传输和良好的隔热性能。具有类金刚石结构的Cu2SnSe3是一种潜在的中温区热电材料, 本研究通过在Sn位和Cu引入Ag离子, 分别获得了高电传输相Cu2Sn0.93Ag0.07Se3和低热传输相Cu1.91Ag0.09SnSe3, 然后通过机械混合和烧结制备了Cu2Sn0.93Ag0.07Se3和Cu1.91Ag0.09SnSe3两相复合的材料。利用两相材料的晶体结构相同和晶格常数匹配的特点, 在高温段有效地协同调控了Cu2SnSe3材料的电输运和热输运性能, 从而使材料的高温热电性能得到优化, 用有效介质理论很好地描述了高性能的两相复合材料的电和热传输行为。  相似文献   

12.
Black phosphorus (BP) has attracted great attention for applications in thermoelectric devices, owing to its unique in‐plane anisotropic electrical and thermal properties. However, its limited conversion efficiency hinders practical application. Here, the thermoelectric properties of 1D BP nanotubes (BPNTs) with different tube chirality are investigated using first‐principles calculations and Boltzmann transport theory. The results reveal that variation of crystallographic orientation has a distinct impact on band dispersions, which provides a wide tunability of electronic transport. It is shown that (1,1)‐oriented BPNT structure can yield an order‐of‐magnitude enhanced thermoelectric figure of merit ZT at room temperature (as high as 1.0), compared with the bulk counterpart. The distinct enhancement is attributed to the favorable multiple band structures that lead to high carrier mobility of 2430 cm2 V?1 s?1. Further performance improvement can be realized by suitable doping, such as N‐alloying, reaching an increase of room‐temperature ZT by a factor of 3 over that of pristine BPNT. The work provides an applicable method to achieve band engineering design, and presents a new strategy of designing 1D BPNT that are promising candidates for flexible, eco‐friendly, and high‐performance thermoelectrics.  相似文献   

13.
刘祎  张荔 《复合材料学报》2021,38(2):287-297
热电材料可以实现热能与电能的直接转化,是一种安全环保的新型能源材料。近年来,随着可穿戴电子设备的发展,柔性热电材料成为研究人员关注的焦点。传统无机热电材料具有优异的热电性能,但由于自身固有的脆性,限制了在柔性领域的发展。聚3, 4-乙烯二氧噻吩: 聚苯乙烯磺酸盐(PEDOT: PSS)具有高电导率、低热导率和良好的柔性,在柔性热电领域具有巨大的潜力。当选择合适的无机填料与PEDOT: PSS进行复合,可以得到优异的热电性能和良好的力学性能。本文综述了PEDOT: PSS基纳米复合薄膜的最新进展,并详细介绍了提高PEDOT: PSS基纳米复合薄膜热电性能的有效方法。最后,本文总结了实现高性能PEDOT: PSS基柔性热电材料的途径及面对的挑战。   相似文献   

14.
Lead chalcogenides have long been used for space‐based and thermoelectric remote power generation applications, but recent discoveries have revealed a much greater potential for these materials. This renaissance of interest combined with the need for increased energy efficiency has led to active consideration of thermoelectrics for practical waste heat recovery systems—such as the conversion of car exhaust heat into electricity. The simple high symmetry NaCl‐type cubic structure, leads to several properties desirable for thermoelectricity, such as high valley degeneracy for high electrical conductivity and phonon anharmonicity for low thermal conductivity. The rich capabilities for both band structure and microstructure engineering enable a variety of approaches for achieving high thermoelectric performance in lead chalcogenides. This Review focuses on manipulation of the electronic and atomic structural features which makes up the thermoelectric quality factor. While these strategies are well demonstrated in lead chalcogenides, the principles used are equally applicable to most good thermoelectric materials that could enable improvement of thermoelectric devices from niche applications into the mainstream of energy technologies.  相似文献   

15.
Indium selenides have attracted extensive attention in high‐efficiency thermoelectrics for waste heat energy conversion due to their extraordinary and tunable electrical and thermal properties. This Review aims to provide a thorough summary of the structural characteristics (e.g. crystal structures, phase transformations, and structural vacancies) and synthetic methods (e.g. bulk materials, thin films, and nanostructures) of various indium selenides, and then summarize the recent progress on exploring indium selenides as high‐efficiency thermoelectric materials. By highlighting challenges and opportunities in the end, this Review intends to shine some light on the possible approaches for thermoelectric performance enhancement of indium selenides, which should open up an opportunity for applying indium selenides in the next‐generation thermoelectric devices.  相似文献   

16.
作为高熵合金设计思想的延伸,熵工程可从电子和声子输运两方面引导热电材料的性能优化,在多种热电材料体系已经获得了成功应用。特别是,熵具有内禀的类似基因特性,可以作为热电材料的指征因子,对多元热电材料实现快速筛选。本文首先揭示熵作为热电材料基因特性的内禀原因,阐述构型熵增加导致材料晶体结构对称性增强、泽贝克系数提升、晶格热导率下降的物理机制;然后着重介绍熵工程在类液态材料和IV-VI族半导体等典型热电材料体系中的应用,总结熵工程提高材料热电性能的研究进展;并介绍多元单相高熵热电材料的热力学稳定性预测方法;最后指出了熵工程将来的研究重点。  相似文献   

17.
Filled skutterudite is currently one of the most promising intermediate-temperature thermoelectric (TE) materials, having good thermoelectric transport performance and excellent mechanical properties. For the preparation of high-efficiency filled skutterudite TE devices, it is important to have p- and n-type filled skutterudite TE materials with matching performance. However, the current TE properties of p-type Fe-based filled skutterudite materials are worse than n-type filled skutterudite materials. Therefore, how to obtain high-performance p-type Fe-based filled skutterudite materials is the key to preparation of high-efficiency skutterudite-based TE devices. This review summarizes some methods for optimizing the thermal transport performance of p-type filled skutterudite materials at the atomic-molecular and nano-mesoscopic scale that have been used in recent years. These methods include doping, multi-atom filling, and use of low-dimensional structure and of nanocomposite. In addition, the synergistic optimization methods of the electrical and thermal transport parameters and advanced preparation technologies of p-type filled skutterudite materials in recent years are also briefly summarized. These optimizational methods and advanced preparation technologies can significantly improve the TE properties of p-type Fe-based filled skutterudite materials.  相似文献   

18.
本文综述了碳纳米材料/聚合物、半导体合金/聚合物、金属纳米粒子/聚合物以及聚合物/聚合物等热电复合材料的研究进展。简要分析了热电复合材料的性能提升机理及现有材料尚存在的问题,并指出了聚合物热电复合材料今后的发展方向。  相似文献   

19.
High‐throughput explorations of novel thermoelectric materials based on the Materials Genome Initiative paradigm only focus on digging into the structure‐property space using nonglobal indicators to design materials with tunable electrical and thermal transport properties. As the genomic units, following the biogene tradition, such indicators include localized crystal structural blocks in real space or band degeneracy at certain points in reciprocal space. However, this nonglobal approach does not consider how real materials differentiate from others. Here, this study successfully develops a strategy of using entropy as the global gene‐like performance indicator that shows how multicomponent thermoelectric materials with high entropy can be designed via a high‐throughput screening method. Optimizing entropy works as an effective guide to greatly improve the thermoelectric performance through either a significantly depressed lattice thermal conductivity down to its theoretical minimum value and/or via enhancing the crystal structure symmetry to yield large Seebeck coefficients. The entropy engineering using multicomponent crystal structures or other possible techniques provides a new avenue for an improvement of the thermoelectric performance beyond the current methods and approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号