首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用光学显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)和能谱分析(EDS)等手段,研究了Ni含量对Mg_(98-x)Er_2Ni_x(摩尔分数,下同,x=0,0.25,0.5,1)合金组织的影响。结果表明,铸态Mg_(98)Er_2合金组织为初生树枝状α-Mg相,晶内出现成分偏析,Mg_(97.75)Er_2Ni_(0.25)、Mg_(97.5)Er_2Ni_(0.5)和Mg_(97)Er_2Ni_1三种合金的组成相主要是α-Mg相和LPSO相,第二相的面积分数分别为12%、19%、34%。在540℃固溶处理时,含Ni的Mg_(98-x)Er_2Ni_x合金组织结构未发生明显改变,仍为α-Mg相和LPSO相,且第二相未发生明显溶解,面积分数相比铸态合金有所增加。Mg_(97.75)Er_2Ni_(0.25)、Mg_(97.5)Er_2Ni_(0.5)和Mg_(97)Er_2Ni_1三种合金固溶处理20h后的LPSO相面积分数分别为16%、34%、42%。  相似文献   

2.
采用常规凝固技术在Mg_(94)Zn_3Y_xGd_(3-x)(x=3,2,1.5,1,摩尔分数)镁合金中获得具有长周期堆垛有序(LPSO)结构相,并对合金凝固组织、耐腐蚀性能和压缩力学性能进行系统研究。结果表明:n(Zn)/n(Y+Gd)=1:1的Mg_(94)Zn_3Y_xGd_(3-x)合金凝固组织含有α(Mg)相、Mg_3Zn_3R_E2(W)相、14H-LPSO相和少量颗粒状面心立方结构的Mg-Y-Gd相。Gd含量显著影响合金中LPSO相的形成和分布。随着Gd含量增加,合金中14H-LPSO相体积分数先增加后减少。结合电化学阻抗谱分析,LPSO增强Mg-Zn-Y-(Gd)镁合金在3.5%NaCl溶液中的电化学腐蚀等效电路为R(Q(R(QR)))。4种合金的腐蚀电流密度在10_(-5)A/cm2数量级。当x(Gd)≤1%时,Mg-Zn-Y-(Gd)合金表现出良好的耐蚀性,并优于工业用AZ91D镁合金。而当x(Gd)≥1.5%时,合金的耐腐蚀能力下降。在室温条件下,随着14H-LPSO相体积分数增加,Mg-Zn-Y-(Gd)合金的压缩力学性能显著提高。此外,适量W相和弥散分布块状Mg-Y-Gd相的钉扎作用有利于提高合金的力学性能。  相似文献   

3.
通过光学显微镜、扫描电镜研究了含长周期相(LPSO)铸态Mg-Zn-Y合金的显微组织。并对铸态Mg-Zn-Y合金进行了电磁屏蔽性能研究。结果表明:该合金的显微组织主要由树枝晶状α-Mg相和晶界处的LPSO相组成,且随着Zn、Y元素含量的增加,该合金的晶粒尺寸明显减小,LPSO相体积分数增加。随着Zn、Y元素含量不断增加,合金的电导率和电磁屏蔽性下降。此外合金的电磁屏蔽性能随频率的提高而下降。Mg_(97)Zn_1Y_2合金的电导率和电磁屏蔽性能最优,分别为18.5 MS/m和f=100 Hz,SE=96 d B;f=1500 Hz,SE=84 d B。  相似文献   

4.
采用重力铸造方法制备了4种Mg100-3xY2xCux(x=0.5,1,1.5和2 at%)合金,借助扫描电镜观察了合金的铸态组织,采用浸泡试验和电化学试验研究了合金的耐蚀性.结果 表明:随着Y、Cu含量的增加,合金中LPSO相的体积分数显著增加,其形貌也由不连续网状和孤岛状共存转变为连续网状分布.LPSO相对合金的腐...  相似文献   

5.
研究了Mg-Gd-Y-Zn-Zr合金中长周期堆垛有序结构(LPSO)对镁合金组织性能的影响。对铸态Mg-6Gd-2xYxZn-0.6Zr(质量分数,%)合金(x值取1、1.5、2、2.5,Y/Zn的质量比为2)进行X射线衍射分析、扫描电镜观察和能谱分析,拉伸试验和阻尼测试。结果表明,随着Y、Zn含量的增加,合金中镁基体减少、第二相增多,合金铸态相组成为Mg基体和Mg10(Gd,Y)Zn相。另外,组织得到细化,抗拉强度明显增加,塑性也有所提高,断裂机理由脆性解理断裂转变为准解理断裂。含有LPSO结构的镁合金的阻尼性能变化不能用单一的G-L理论解释。  相似文献   

6.
为了改善Mg_2Ni型合金的气态贮氢动力学性能,在合金中添加少量La,并用快淬工艺制备La-Mg-Ni-Cu系Mg_2Ni型(Mg_(24)Ni_(10)Cu_2)_(100-x)La_x(x=0,5,10,15,20)(摩尔分数,x%)合金。采用XRD、SEM及HRTEM分析铸态及快淬态合金的微观结构;采用全自动Sieverts测试仪测试合金的气态吸放氢动力学;采用差热分析仪测试不同加热速率下合金的放氢DSC曲线,并用Kissinger方程计算合金的放氢激活能。建立动力学与La含量及淬速的关系。结果表明:添加La不改变合金的主相Mg_2Ni相,但导致第二相La_2Mg_(17)和LaMg_3相出现,第二相的量随La含量的增加而增加。添加La和快淬有助于合金形成纳米晶-非晶结构,降低放氢激活能,从而改善放氢动力学。当La含量x从0增加到20时,铸态合金的放氢激活能E_k~(de)从73.18 kJ/mol下降到60.41 kJ/mol,而30m/s的快淬态合金的E_k~(de)值从66.16 kJ/mol下降到50.50 kJ/mol。  相似文献   

7.
采用真空感应熔炼在高纯氦气气氛保护下制备Mg_2Ni型Mg_(20-x)Y_xNi_(10)(x=0,1,2,3,4)铸态电极合金,然后将铸态合金置于行星式球磨机中进行机械球磨得到球磨合金。SEM、XRD以及TEM测试结果表明,通过球磨可以得到纳米晶和非晶结构,非晶相含量随着球磨时间的延长而增加。电化学测试表明,Y_0合金的放电容量随着球磨时间的延长而增大,而Y替代合金的放电容量随球磨时间的延长出现最大值。循环稳定性随着球磨时间的延长均有所降低,表明球磨对循环稳定性不利。球磨时间对电化学动力学的影响与Y含量有关。当x=0时,合金电极的高倍率放电性能、氢扩散系数、极限电流密度以及电荷转移率都随着球磨时间的延长而增大,而x=3时结果却相反。  相似文献   

8.
《铸造》2019,(2)
为了研究Ni含量对镁基非晶复合材料组织结构和力学性能的影响,采用铜模铸造法制备了直径为2 mm的Mg_(77+x)Ni_(12-x)Zn_5Y_6(x=0,2,4,6,8)系列合金。通过X-射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电子显微镜(HRTEM)和力学性能试验机分析了复合材料的相组成和组织结构,并进行力学性能测试。结果表明:当Ni含量为8 at%时,形成了大小、分布都均匀的长周期(LPSO)相;相对于完全非晶合金来说,五种复合材料都表现出一定的塑性;Mg_(79)Ni_(10)Zn_5Y_6复合材料的断裂强度最高,达到783 MPa;Mg_(81)Ni_8Zn_5Y_6复合材料的塑性最大,塑性应变达到20.23%。  相似文献   

9.
研究了固溶和冷却处理对Mg-2Dy-0.5Ni(摩尔分数,%)合金中的长程堆垛有序(LPSO)相形貌及析出硬化行为的影响。铸态合金组织主要包括α-Mg相、分布在枝晶间具有LPSO结构的竹尖状Mg_(12)DyNi相和少量立方体状的Dy相。在565℃固溶处理12 h及随后不同的冷却过程中,点状、块状、细薄片状和棒状的LPSO相分别在基体中析出。在连续冷却(空冷和炉冷)的条件下,细薄片状的LPSO相逐渐在晶粒内部析出;随着冷却时间的延长,其体积分数亦增加,且块状的LPSO相发生粗化。在不连续冷却(炉冷到415℃+空冷和炉冷到265℃+空冷)条件下,点状LPSO相生长成棒状相,降低了合金的冷却硬化作用。  相似文献   

10.
通过常规金属型铸造方法制备了Mg_(96.5-X)Y_XGd_1Zn_2M_(n0.5)(x=1.0,1.5,2.0,2.5)(x%)合金。利用光学显微镜、X射线衍射仪、扫描电子显微镜和力学性能试验机等对合金的铸态显微组织及力学性能进行了系统的分析。研究结果显示,随着Y的增加,铸态合金组织明显细化,晶界上形成了18R型的长周期堆垛有序结构相,并且随着Y含量的增加其体积分数上升,Y含量增至2.5%时,18R型的长周期相明显粗化。当Y含量为2.0%时,力学性能最优,抗拉强度和延伸率为221MPa和8.2%。随着Y含量的进一步增加,抗拉强度略有下降。  相似文献   

11.
采用X射线衍射、扫描电子显微镜、透射电子显微镜和室温拉伸等方法,研究了总压下量分别为25%和50%的热轧Mg_(97)Zn_1Y_2(at%)合金板显微组织以及力学性能。结果表明:轧制过程中,具有14H长周期堆垛结构(LPSO)的Mg_(12)Zn Y相发生了扭折变形。随着轧制变形量的增大,LPSO相扭折变形程度增大。同时,轧制变形量较大的合金板材具有较强的基面织构,较高的抗拉强度和较好的塑性。  相似文献   

12.
通过实验设计阐明LPSO相对镁合金腐蚀行为的影响。按照形成18R-LPSO相的最小结构单元,即Zn/Y=3/4(摩尔比),设计4种不同LPSO相体积分数的Mg-Zn-Y合金,对比研究4种合金的显微组织和腐蚀行为。结果表明,合金主要含有α-Mg和18R-LPSO相,18R-LPSO相的体积分数随着Zn和Y含量的增加而增加。4种合金中18R-LPSO相的体积分数依次为16.55%、34.45%、54.24%和70.36%,18R-LPSO相的空间分布也由离散块状变为连续网络状。当LPSO相的体积分数在50%左右时,合金的耐蚀性最好,体积分数大于或小于50%都会导致合金耐蚀性能降低。  相似文献   

13.
研究了稀土Y变质(0%~0.8%,质量分数)对Mg-5Sn-1Si合金显微组织的影响。通过XRD和SEM分析了该合金的组织和相组成。结果表明,受成分过冷的作用,适量Y能有效细化铸态组织。随着Y含量从0.2%增加到0.8%,生长抑制因子GRF值从Mg-5Sn-1Si-0.2Y的16.94增大到Mg-5Sn-1Si-0.8Y的17.96,枝晶臂间距平均尺寸从不含Y的Mg-5Sn-1Si合金的23.7μm减小至Mg-5Sn-1Si-0.8Y合金的12.5μm,减小了约47%。由于Y元素在Mg_2Si表面的偏聚,Mg-Y二元相或是Mg-Si-Y三元相将在Mg_2Si和α-Mg前沿析出,抑制了共晶Mg_2Si的异向生长,使复杂汉字状的Mg_2Si转变为棒状组织。当Y含量达到0.8%时,Y元素对Mg_2Si变质效果最佳。通过XRD和SEM分析了该合金的相组成,合金由α-Mg基体、Mg_2Sn、Mg_2Si和少量的Mg_(24)Y_5和Mg Si Y组成。使用CASTEP软件包基于第一性原理,计算了三种Mg Si Y晶胞结构的结合能E_(coh),计算结果与Mg_2Si结合能的对比,证实了Mg Si Y存在的可能性。  相似文献   

14.
向含LPSO结构相的Mg_(95.5)Y_3Cu_(1.5)合金中添加Ti,主要考察Ti含量对合金凝固组织和力学性能的影响。结果表明,添加Ti能够显著细化合金中的初生α-Mg相。随着Ti含量增加,初生α-Mg相的晶粒尺寸呈先降低后增加的趋势。另外,合金的抗拉强度和伸长率均呈先提高后降低的趋势。当Ti含量为0.4%时(摩尔分数),合金的抗拉强度和伸长率均达到最大值,分别为168 MPa和6.4%,相比未添加Ti时提高了17.1%和39.6%。  相似文献   

15.
采用流变挤压铸造工艺制备了含有LPSO结构的Mg99.9-3xZnxY2xZr0.1(x=0.5、1、2,摩尔分数,%)合金,研究了合金的微观组织特征及力学性能。结果表明,流变挤压铸造能有效细化合金的微观组织。合金的基体组织由尺寸较大的α1-Mg和尺寸较小的α2-Mg晶粒组成,LPSO结构呈细小的网状结构均匀地分布在晶界处,LPSO结构的含量越低,其细化效果越明显。随着挤压压力增大,合金中LPSO结构的厚度越来越小,当压力达到100MPa后,厚度变化趋缓。与常规重力铸造相比,流变挤压铸造能有效提高合金的力学性能,特别是伸长率。在400MPa下的流变挤压铸造Mg96.9Zn1Y2Zr0.1合金的抗拉强度和伸长率较重力铸造下分别提高了19%和170%。  相似文献   

16.
《铸造》2019,(6)
采用超声振动制备Mg98.5Ni0.5Y1.0合金半固态浆料,随后将浆料直接挤压铸造成形,研究了挤压压力对合金组织和性能的影响。结果表明,挤压铸造能显著细化半固态Mg98.5Ni0.5Y1.0合金中的初生α-Mg相和长周期堆垛有序(LPSO)结构。挤压铸造压力能提高Y和Ni元素在镁基体中的固溶度,促使Mg2Ni颗粒在LPSO结构中析出。随着挤压铸造压力的升高,合金的晶粒尺寸降低,强度不断提高,100 MPa时合金具有最佳的综合性能,其抗拉强度、屈服强度以及伸长率分别为240 MPa、113 MPa和13.12%,与未施加压力的合金相比,分别提高了7.6%、19.56%和12.7%。  相似文献   

17.
采用负压感应熔炼法制备了(La_(0.7)Mg_(0.3))Ni_x(x=2,2.5,3)储氢合金,对比分析了不同组分的快淬和铸锭(La_(0.7)Mg_(0.3))Ni_x储氢合金在退火前后的储氢性能、物相组成和显微形貌。结果表明,随着(La_(0.7)Mg_(0.3))Ni_x合金中Ni含量的增加,快淬储氢合金的放氢平台逐渐升高且变宽,放氢速率和放氢容量逐渐增加,(La_(0.7)Mg_(0.3))Ni_(2.5)合金的吸放氢平台压力适中;x=2.5时,铸锭储氢合金具有相对x=2时更宽和平整的吸放氢平台,且平台压更高,Ni含量的增加有助于提高(La_(0.7)Mg_(0.3))Ni_x储氢合金的放氢速率;铸锭和快淬(La_(0.7)Mg_(0.3))Ni_x储氢合金在铸态和不同温度退火态下的物相都由LaNi_5、(LaMg)Ni_3和(LaMg)_2Ni_7相组成,且随着退火温度升高,LaNi_5和(LaMg)Ni_3相有朝着(LaMg)_2Ni_7相转变的趋势。  相似文献   

18.
实验铸造了Mg-9Li-3Al-x Si(x=0,0.1,0.5,1.0,质量分数,%)合金并通过OM,SEM,XRD和力学性能测试对其进行了研究。结果表明:铸态Mg-9Li-3Al合金组织中主要由α-Mg、β-Li、Mg_(17)Al_(12)相组成。加入Si后,合金中出现了新相Mg2Si,晶粒得到了明显细化,且Si能够抑制Mg_(17)Al_(12)的形成;当合金中的Si含量过高时,α-Mg相粗化,且会在相界处出现块状和汉字状的Mg_2Si相。合金的强度随着Si含量的增加呈现先增加后降低的趋势,合金的延伸率随着Si含量的增加呈现逐渐降低的趋势。当合金中Si含量为0.1%时,抗拉强度达到最大值182.5 MPa,延伸率为12.1%。  相似文献   

19.
采用室温拉伸试验,结合显微组织观察、晶粒尺寸测定和晶格常数分析等研究了具有不同稀土元素Y含量的铸态Mg-Y合金的力学性能和强化机制。结果表明,随着Y的质量百分含量从5%增加到12%,铸态Mg-Y合金的抗拉强度先增加后降低且在Y含量为10%时取得最大值,同时合金的伸长率逐渐降低;合金的显微组织由α-Mg基体和Mg_(24)Y_5相组成,随着Y含量的增加,合金的晶粒尺寸减小,高熔点Mg_(24)Y_5相增多;合金的强化机制可主要归结为细晶强化、固溶强化和第二相(Mg_(24)Y_5)强化。  相似文献   

20.
通过真空熔炼方法制备铸态Mg-8Li-xZn-yGd(x=1,2,3,4;y=1,2;wt%)合金,并对合金的显微组织和力学性能进行研究。结果表明:随着Zn含量的增加,W相(Mg_3Zn_3Gd_2)的体积分数增加,而Mg_3Gd相的体积分数减少。Mg-8Li-xZn-lGd合金强度的提高是因为随着锌含量的增加,细小片状W相的第二相强化以及Zn的固溶强化。随着钆含量的增加,Mg-8Li-4Zn-yGd合金的强度降低,这是因为形成粗化和不连续网状的W相。Mg-8Li-4Zn-1G合金表现出最优的综合性能,屈服强度为154.7MPa、抗拉强度为197.0MPa、伸长率为12.4%。另外,对合金的时效行为进行研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号