首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
Fe2O3具有理论比容量高和价格低廉等特点, 已成为锂离子电池负极材料的研究热点之一。实验以不同质量比PVP/FeCl3溶液为前驱体, 静电纺丝技术制备PVP/FeCl3纳米纤维并热处理, 得到不同直径的Fe2O3纳米纤维负极材料, 并以水热合成法制备了Fe2O3纳米颗粒。利用X射线衍射、热重、红外光谱、扫描电镜、透射电镜和恒流充放电等测试手段对材料的物相、微观形貌和电化学性能进行表征。结果表明, Fe2O3纳米纤维比Fe2O3纳米颗粒表现出更优的电化学性能, 直径为160 nm的Fe2O3纳米纤维负极材料的倍率性能和循环性能最佳, 材料在0.1 A/g电流密度下的可逆容量为827.3 mAh/g;在2 A/g电流密度下70次循环放电比容量有439.1 mAh/g。  相似文献   

2.
采用静电纺丝与高温煅烧相结合的方法, 以聚乙烯吡咯烷酮(PVP)、九水合硝酸铁(Fe(NO3)3·9H2O)和六水合硝酸钴(Co(NO3)2·6H2O)为原料, 制备出了类鱼骨结构的CoFe2O4纳米纤维, 并研究了煅烧温度对CoFe2O4纳米纤维形貌、磁性能以及微波吸收性能的影响。结果表明: 随着煅烧温度的升高, CoFe2O4纤维的结晶度和晶粒尺寸逐渐增大, 纳米纤维的表面形貌由光滑发展为粗糙多孔, 煅烧温度超过800 ℃时, 纳米纤维呈现类鱼骨结构; 随着煅烧温度增加纤维直径逐渐减小, 900 ℃煅烧的纤维平均直径为80.3 nm。所制备的纳米纤维经振动样品磁强计(VSM)测试结果表明, 饱和磁化强度(Ms)随着煅烧温度的升高而增加, 在900 ℃煅烧条件下纤维的Ms达87.13 A·m2/kg。矢量网络分析仪测试结果表明, 不同煅烧温度下纤维的微波吸收性能差异明显, 800 ℃下煅烧的纤维具有最佳的吸波性能。CoFe2O4纳米纤维通过磁滞损耗和涡流损耗机制吸收电磁波, 煅烧产生的孔洞和类鱼骨形貌有利于电磁波在孔道表面多次反射从而增加反射损耗。  相似文献   

3.
以2-乙基己酸亚锡为原料, 通过静电纺丝以及随后在惰性气氛中煅烧成功制备出电化学性能优良的SnO2-C复合纤维。X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、热重分析(TGA)、扫描电镜(SEM)和透射电镜(TEM)的分析结果表明: SnO2-C复合纤维具有无定形结构, 直径为100~300 nm, 含碳量约38%。电化学测试结果表明: 在50 mA/g的电流密度下, 无定形SnO2-C复合纤维的首次放电比容量、充电比容量和库仑效率分别为1370.1 mAh/g、757.5 mAh/g和55.28%; 在50 mA/g的电流密度下循环80次后, SnO2-C复合纤维的比容量为611.6 mAh/g, 没有出现明显的容量衰减。SnO2-C复合纤维高的比容量和良好的循环性能归因于其SnO2均匀分布的SnO2-C复合一维结构。  相似文献   

4.
本工作采用缓冲溶液法制备Mn掺杂Ni(OH)2(Ni1-xMnx(OH)2, x=0.1, 0.2, 0.3, 0.4), X射线衍射测试表明样品主要是β相, 有少量Mn3O4杂相; 循环伏安测试表明, x=0.2的材料还原峰积分面积最大、还原分支的峰电流最高; 恒流充放电测试表明, 在100 mA/g电流密度下, Ni0.8Mn0.2(OH)2放电比容量最高, 其第20次循环放电比容量为271.8 mAh/g, 同等条件测试的商用β-Ni(OH)2放电比容量为253.6 mAh/g; 在300、500 mA/g电流密度下, Ni0.8Mn0.2(OH)2放电比容量仍保持最高, 分别为294.7、291.5 mAh/g, 而且Mn掺杂Ni(OH)2的循环稳定性也优于商用β-Ni(OH)2。Mn掺杂可改善镍电极的循环稳定性、降低镍电极成本, 具有广阔的应用前景。  相似文献   

5.
制备长循环稳定、高容量的负极材料是锂离子电池实现大规模储能应用的前提之一。利用静电纺丝技术和水热硫化的方法制备了均匀分布的NiS2/碳纳米纤维(NiS2/C)复合材料。作为锂离子电池负极材料,NiS2/C电极的首次放电比容量为864.6 mAh/g,首次库仑效率为62.7%。其中不可逆容量为322.9 mAh/g,不可逆容量主要由转换反应的部分不可逆及固态电解质(SEI)膜的形成造成的。NiS2/C复合电极表现出优异的循环稳定性,200 mA/g下150次循环后容量仍然维持在519 mAh/g,容量保持率高达90.4%。此外,在2 A/g大电流密度下,NiS2/C电极的容量仍高于310 mAh/g表现出出色的倍率性能。借助XRD、SEM及TEM表征,分析发现包裹着NiS2纳米颗粒的碳纤维,作为良好的导电介质,既可以提高NiS2的导电性,也可缓解NiS2脱嵌过程中的体积膨胀,使得NiS2/C电...  相似文献   

6.
当前制约钠离子电池发展的主要因素包括较低的能量/功率密度和较差的循环性能, 而在正极材料表面包覆含氧缺陷金属氧化物层, 可以有效提高材料的电子导电率, 保证高振实密度、能量密度和功率密度。本文通过温和的溶剂热反应制备Na3V2(PO4)2F3纳米片前驱体并结合高温煅烧合成Na3V2(PO4)2F3@V2O5-x复合材料。其结构通过XRD、TEM、SEM、XPS和TGA测试进行表征。作为钠离子电池的正极材料, 展现了优异的循环性能和倍率性能。在0.2C倍率下, 首圈放电比容量为123 mAh?g -1, 循环140圈后容量保持在109 mAh?g -1。当电流密度提高至1C, 首圈放电比容量达到72 mAh?g -1, 充放电循环500圈后, 容量保持率高达84%。优异的电化学性能归因于材料表面包覆的具有丰富结构缺陷的无定型层, 有效提高了离子的扩散和电子导电率。此方法将有助于钠离子电池的实际应用。  相似文献   

7.
以锡酸钠为原料,聚乙烯吡咯烷酮(PVP)为表面活性剂,采用水热法制备松球状SnO_2纳米棒负极材料。利用扫描电子显微镜(SEM)、X射线衍射(XRD)、比表面积仪(BET)及电化学测试仪测试材料的形貌、结构、比表面积和电化学性质。结果表明,制备的SnO_2纳米晶体形貌呈松球状且尺寸均匀,分散性良好,为典型的四方系金红石相结构,比表面积为110.3m2/g,且为Ⅳ型的介孔结构。在0.01~2.5V,以200mA/g进行充放电,材料的首次放电容量为1659.3mAh/g,经过50次循环后,放电容量保持313.9mAh/g,表现出较好的循环稳定性能。  相似文献   

8.
以ZnCl2和FeCl3.6H2O为原料, 通过溶剂热法制备了尖晶石型ZnFe2O4材料, 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶红外光谱(FT-IR)和恒流充放电测试技术对材料的结构、形貌及电化学性能进行了表征。结果表明, 合成的材料为纳微多孔结构, 其颗粒粒径约为250 nm, 以50 mA/g的电流密度充放电时, 可逆比容量为933.1 mAh/g, 经过100次循环后, 比容量为813.5 mAh/g, 比容量保持率高达87.2%, 表现出优异的循环稳定性能。当电流密度增大到400 mA/g时, 其比容量约为355 mAh/g, 表现出较高的倍率性能。采用该法制备得到的纳米ZnFe2O4具有比容量高、循环稳定好等优点, 是一种具有较强应用前景的锂离子电池负极材料。  相似文献   

9.
以聚乙烯吡咯烷酮(PVP)、Zn(CH3COO)2·2H2O、Mn(CH3COO)2·4H2O和乙醇为原料,采用静电纺丝法制备PVP/C4H6O4Zn/C4H12O8Mn复合纳米纤维,经过不同温度煅烧得到ZnMn_2O_4纳米纤维,将其运用于锂离子电池负极材料,探讨了煅烧温度对材料结构形貌和电化学性能的影响。利用热重、扫描电镜和X射线衍射等对其热解过程、形貌和晶型结构等进行了表征,通过恒流充放电测试研究煅烧温度对ZnMn_2O_4纳米纤维电化学性能的影响。结果表明:经高温煅烧后纤维形貌发生明显变化,出现了ZnMn_2O_4特征衍射峰,不同温度下煅烧处理后样品的首次放电比容量差异不大,但700℃处理后的样品具有较好的循环性能。  相似文献   

10.
以Ce(OH)4为原料, 采用热分解法制备得到粒径小于10 nm的CeO2纳米晶。制备得到的CeO2纳米晶表面存在丰富的羟基和硝基, 作为硫正极添加剂, 一方面可以有效吸附硫和多硫化锂, 抑制多硫化锂在电解液中的溶解和穿梭效应的发生, 进而提高电池的循环性能。同时, 可以改善电极和电解液之间的接触性, 提高活性物质利用率。其中, 含有5wt%的CeO2纳米晶的锂硫电池在0.1C和0.5C(1C=1675 mA/g)的充放电倍率下, 100周之后放电比容量分别达750 mAh/g和598 mAh/g, 远高于不含有CeO2纳米晶的523 mAh/g和395 mAh/g, 同时, 循环前后的电池阻抗也明显降低。  相似文献   

11.
以Cu片和1, 3, 5-苯三甲酸为原料,电化学法制备经典Cu-MOF材料Cu3(BTC)2(H2O)3,即HKUST-1,作为基底金属有机框架材料(MOFs),采用室温沉积法制备FeVO4/HKUST-1异质结复合材料,通过XRD、SEM、BET、UV-Vis DRS等对其晶体结构、形貌、比表面积、光吸收性能等进行了表征。结果表明:FeVO4与HKUST-1复合形成异质结后,有利于光生电子-空穴的产生和转移,对目标染料污染物罗丹明B(RhB)的降解性能显著增强。可见光照射120 min后,异质结体系中RhB的降解率可达93%,而单一FeVO4或HKUST-1体系中仅为12%和5%。此外,对材料的组成比例进行了优化,当FeVO4与HKUST-1摩尔比为1∶1时,制备的FeVO4/HKUST-1复合材料具有最佳的光催化性能。进一步,考察了其循环使用的稳定性,循环5次后对RhB的降解效率仍保持在90%以上,稳定性良好。   相似文献   

12.
闫俊  肖勇  徐晶  陈磊  刘雍 《材料工程》2022,50(12):25-34
可充电水系锌离子电池(ZIBs)由于性能优良、价格低廉、环境友好等优点而被广泛研究,而针对高容量、长循环寿命的ZIBs阴极结构设计成为该领域研究的热点。采用同轴静电纺丝法,以PAN溶液为皮层,含有Mn(NO_(3))_(2)·xH_(2)O的PAN溶液为芯层制备纳米纤维膜,并对其炭化后得到了一种表面具有类皮脂腺凸起结构的碳纳米纤维(MCNFs),在其表面电化学沉积MnO_(2),制得了与电解液具有优良亲和性的MnO_(2)@MCNFs阴极材料。研究表明:设计得到的类皮脂腺结构不仅增大了阴极比表面积,而且在MCNFs基底与电化学沉积的α-MnO_(2)活性物质之间形成铆接效应,加固了界面结合,减少活性物质脱落,降低界面电阻,缩短了电子传导和离子扩散路径。对其电化学性能进行测试,芯层Mn(NO_(3))_(2)·xH_(2)O含量为3%的阴极在100 mA/g的电流密度下,首周次比容量达581.16 mAh/g;在1 A/g电流密度下循环1000周次后比容量仍大于120 mAh/g,库仑效率保持在99%左右。  相似文献   

13.
采用静电纺丝技术结合高温煅烧方法,以乙酰丙酮钴(Co(C5H7O2)3)为前驱物,制备了由Co3O4纳米颗粒组成的多孔纳米纤维(Co3O4 NFs),其比表面积高达83 m2·g?1,并将制得的多孔Co3O4 NFs用于锂-空气电池催化剂。多孔Co3O4 NFs为电池反应提供了充足的活性位点及反应物的传输通道,有利于电池反应的顺利进行,使电池的放电容量得到极大地提高。另外,Co3O4催化剂的加入提高了电极的催化活性,较大程度降低了电池的过电位。值得注意的是,Co3O4催化剂的加入同时调控了锂-空气电池放电产物Li2O2的形貌,得到的放电产物Li2O2尺寸更小,在电极表面分布更为均匀,该形态的Li2O2在充电过程中更容易被分解,有利于提高电池的充电效率,同时电极的体积效应也可得到极大缓解。得益于以上优势,基于多孔Co3O4 NFs/炭黑Super P (Co3O4 NFs/SP)正极的锂-空气电池的电化学性能得到较大提高,50 mA·g?1电流密度下Co3O4 NFs/SP的放电容量高达10600 mA·h·g?1,电池可实现100次的充放电循环。   相似文献   

14.
利用简单易行的一步水热法制备了Ni(OH)2-碳纳米管-还原氧化石墨烯(Ni(OH)2-CNTs-RGO)三元复合材料,研究了不同水热反应温度对三元复合材料性能的影响。采用XRD、FTIR、Raman、X射线光电子能谱(XPS)、SEM及TEM对Ni(OH)2-CNTs-RGO复合材料的结构和表面微观形貌进行表征。利用循环伏安(CV)、电化学交流阻抗(EIS)和恒电流充放电测试了复合电极材料的电化学性能。研究结果表明,当反应温度为120℃时,所制备的Ni(OH)2-CNTs-RGO复合材料具有大的比表面积和三维网状结构,复合材料中六角形的β-Ni(OH)2纳米片和CNTs均匀分散在RGO片层表面,有效阻止了RGO的团聚。Ni(OH)2-CNTs-RGO复合电极材料在充电倍率为0.2 C时,放电比容量达到362.8 mAh/g,5 C时放电比容量为286.2 mAh/g,仍大于Ni(OH)2在0.2 C时的放电比容量,表明CNTs与RGO的协同作用有效提高了电极材料的导电性和活性物质的利用率,最终提升了Ni(OH)2-CNTs-RGO复合材料的倍率性能。  相似文献   

15.
首先合成氨基功能化Fe3O4(NH2—Fe3O4),并以NH2—Fe3O4为磁核,六水合硝酸锌(Zn(NO3)2·6H2O)为锌源,在表面活性剂聚乙二醇(PEG,PEG-400)辅助下通过水热法制备PEG修饰的ZnO(NH2—Fe3O4@PEG@ZnO)磁性复合材料。利用XRD、SEM、TEM、XPS、紫外-可见-近红外分光光度计、比表面吸附仪(BET)、振动样品磁强计(VSM)等对NH2—Fe3O4@PEG@ZnO复合材料组成、形貌、磁性能等进行表征。并进一步以罗丹明B(RhB)染料为模拟污染物,对NH2?Fe3O4@PEG@ZnO复合材料的光催化降解性能进行研究,采用单因素法探究Fe与Zn的原子比(n(Fe)∶n(Zn))、合成温度、表面活性剂种类及用量对NH2—Fe3O4@PEG@ZnO复合材料光催化降解性能的影响。结果表明,n(Fe)∶n(Zn)=1∶15、水热合成温度为180℃制备的NH2—Fe3O4@ZnO复合材料具有良好的光降解性能,0.0500 g NH2—Fe3O4@ZnO复合材料在紫外光照射20 min内对50 mL RhB(1.0×10?5 mol·L?1)溶液降解率为90.36%。而相同条件制备的NH2—Fe3O4@PEG@ZnO复合材料呈微球状,比表面积为11.43 m2·g?1,禁带宽度为2.51 eV,对RhB的光催化降解率可提高至99.36%,循环使用10次后,其对RhB的光催化降解率仍可达96.48%,PEG-400对NH2—Fe3O4@ZnO复合材料的光催化活性具有较大的协同效应。   相似文献   

16.
A hydrothermal deposition method was utilized to fabricate Ca-P composite coating induced by the layer-by-layer (LbL) assembled polyvinylpyrrolidone/deoxyribonucleic acid (PVP/DNA)20 multilayer on AZ31 alloy. The surface morphology and compositions were characterized by SEM, EDS, FTIR and XRD. Besides, the corrosion resistance and degradation behavior of the coating were tested via electrochemical polarization, impedance spectroscopy and immersion measurements. Results show that the main components of Ca-P coatings are hydroxyapatite, Ca3(PO4)2 and Mg3(PO4)2·nH2O. The LbL-assembled DNA and PVP promote the adsorption of Ca-P deposits on the sample surface, and structures and functional groups of the polyelectrolyte in the outermost layer are the primary influencing factor for the induction of the Ca-P coating. Carboxyl groups have the best biomineralization effect among all related functional groups. The enhanced corrosion resistance and adhesion highlight a promising use of (PVP/DNA)20-induced Ca-P coatings in the field of biomedical magnesium alloys.  相似文献   

17.
以Co(NO3)2·6H2O为钴源, NH4F和尿素作为添加剂, 通过水热法在粘胶基活性炭纤维(ACF)的表面生长了Co3O4纳米线, 制备了Co3O4@ACF复合材料并进行了结构形貌表征及电化学性能测试。结果表明: 针状的Co3O4纳米线阵列均匀地垂直生长在活性炭纤维表面, 形成了丰富的介孔结构。通过改变Co(NO3)2·6H2O的用量, 可以获得不同负载量的Co3O4@ACF复合材料。当Co3O4负载量为47wt%时, Co3O4@ACF复合材料在1 A/g电流密度下的比电容高达566.9 F/g, 几乎是纯Co3O4的2倍; 在15 A/g的电流密度下, 其比电容仍可达到393.3 F/g, 表现了较好的倍率特性; 经过5000次循环充放电后, 其比电容仍可保持84.2%, 展现了优良的循环稳定性。  相似文献   

18.
张旭  杨绍斌 《复合材料学报》2021,38(5):1558-1566
通过热缩聚合成法,采用尿素为原料,制备石墨相氮化碳(g-C3N4),以磷酸氢二胺作为磷源,制备不同磷含量的磷掺杂g-C3N4 (xP-CN),研究磷掺杂对xP-CN的微观结构、形貌及xP-CN/S复合材料作为锂硫电池正极材料电化学性能的影响。研究表明,磷掺杂后xP-CN的层间距增大,导电性提高,比表面积变大,10% P-CN的比表面积最大达到101.741 m2·g?1。10% P-CN/S复合材料在0.05 C (1 C=1675 mA·h·g?1)下首次放电比容量达到1383.8 mA·h·g?1,在0.2 C下循环100次后可逆比容量为860.0 mA·h·g?1,而g-C3N4/S复合材料比容量仅为178.3 mA·h·g?1;10% P-CN/S复合材料经过倍率测试后比容量可以回复到0.2 C时的93.6%,表现出良好的循环性能和倍率性能。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号