首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Pax-3 protein contains two DNA-binding domains, a paired domain and a homeodomain. Mutations in Pax-3 cause Waardenburg syndrome (WS) in humans and the mouse Splotch (Sp) phenotype. In the Sp-delayed mouse, a mutation in the Pax-3 paired domain (G9R) abrogates the DNA-binding activity of both the paired domain and the homeodomain, suggesting that they may functionally interact. To investigate this possibility further, we have analyzed the DNA-binding properties of additional point mutants in the Pax-3 paired domain and homeodomain that occur in WS patients (F12L, N14H, G15S, P17L, R23L, G48A, S51F and G66D in the paired domain, V47F and R53G in the homeodomain), the Pax-1 un mutation (G15A) and a substitution associated with Peters' anomaly in the PAX-6 gene (R23G). Within the paired domain, seven of 10 mutations were found to abrogate DNA-binding by the paired domain. Remarkably, these seven mutations also affected DNA binding by the homeodomain, causing either a complete loss (P17L and G66D), a reduction (R23G, R23L, G15S and G15A) or an increase in DNA-binding activity (N14H). In addition, the effect of paired domain mutations occurred at the level of monomer formation by the homeodomain, while the dimerization potential of this domain seemed unaffected in mutants where it could be analyzed. Furthermore, while both homeodomain mutations were found to abolish DNA binding by this domain, the R53G mutation also abrogated DNA binding by the paired domain. The important observation that independent mutations in either domain can affect DNA binding by the other in the intact Pax-3 protein strongly suggests that the two domains are not functionally independent but bind DNA through cooperative interactions. Modeling the deleterlous mutations on the three-dimensional structure of the paired domain of Drosophila Prd shows that these mutations cluster at the DNA interface, thus suggesting that a series of DNA contacts are essential for DNA binding by both the paired domain and the homeodomain of Pax-3.  相似文献   

4.
Factor V and protein S are cofactors of activated protein C (APC) which accelerate APC-mediated factor VIII inactivation. The effects of factor V and protein S were quantitated in a reaction system in which plasma factor VIII was inactivated by APC and the loss of factor VIII activity was monitored in a factor X-activating system in which a chromogenic substrate was used to probe factor Xa formation. Factor V increased the rate of APC-mediated factor VIII inactivation in a dose-dependent manner in representative plasma samples with protein S or factor V deficiency, abnormal factor V (heterozygous or homozygous for factor VR506Q), or a combination of heterozygous protein S deficiency and heterozygous factor VR506Q. This effect was much less pronounced in the plasma samples with a decreased protein S level, but the impaired response in these plasmas was corrected by addition of protein S, indicating that both factor V and protein S are required for optimal inactivation of factor VIII by APC. The effects of factor V and protein S were also studied in a reaction system with purified proteins. APC-catalysed factor VIII inactivation was enhanced 3.7-fold in the presence of 1.1 nM factor V and 1.5-fold in the presence of 2.4 nM protein S. When both 1.1 nM factor V and 2.4 nM protein were present the rate enhancement was 11-fold. Factor V is a more potent cofactor than protein S, as can be concluded from the fact that 0.04 nM factor V gave the same stimulation as 2.4 nM protein S. Protein S lost its cofactor function after complexation with C4b binding protein, which indicates that it is free protein S that acts as a cofactor. To investigate the effect of the R506Q mutation in factor V on APC-mediated factor VIII inactivation, factor V was purified from the plasma of patients homozygous for factor VR506Q. In the absence of protein S, factor VR506Q did not enhance factor VIII inactivation by APC, but in the presence of 2.4 nM protein S a slight enhancement was observed. The APC cofactor activity of factor V was lost when factor V was activated with thrombin or with the factor V activator from Russell's viper venom. These data indicate that optimal inactivation of factor VIII by APC requires the presence of an intact factor V molecule and free protein S.  相似文献   

5.
The Cbl proto-oncogene product is a complex adapter protein that functions as a negative regulator of protein tyrosine kinases. It is rapidly tyrosine-phosphorylated and associates with Crk(L) and p85 phosphatidylinositol 3-kinase (PI3K) upon engagement of numerous receptors linked to tyrosine kinases. Elucidation of the mechanism(s) underlying Cbl deregulation is therefore of considerable interest. The 70Z Cbl oncoprotein shows increased baseline tyrosine phosphorylation in fibroblasts and enhances nuclear factor of activated T cells (NFAT) activity in Jurkat T cells. Its transforming ability has been proposed to relate to its increased phosphotyrosine content. We demonstrate that 70Z Cbl shows increased basal and activation-induced tyrosine phosphorylation and association with Crk(L) and p85 PI3K in Jurkat T cells. 70Z Cbl, however, retains the ability to enhance NFAT and activating protein 1 (AP1) activity in the absence of Crk(L)/p85 PI3K association. In contrast, the G306E mutation, which inactivates the phosphotyrosine binding domain of Cbl, blocks NFAT/AP1 activation by 70Z Cbl. We conclude that 70Z Cbl-induced NFAT/AP1 activation requires the phosphotyrosine binding domain but not Crk(L)/p85 PI3K association. We hypothesize that 70Z Cbl acts as a dominant negative by blocking the negative regulatory function of the Cbl phosphotyrosine binding domain on protein-tyrosine kinases.  相似文献   

6.
We have used circular permutation assays to determine the extent and location of the DNA bend induced by the DNA binding domain of human wild type p53 (p53DBD) upon binding to several naturally occurring DNA response elements. We have found that p53DBD binding induces axial bending in all of the response elements investigated. In particular, response elements having a d(CATG) sequence at the junction of two consensus pentamers in each half-site favor highly bent complexes (bending angle is approximately 50 degrees ), whereas response elements having d(CTTG) bases at this position are less bent (bending angles from approximately 37 to approximately 25 degrees ). Quantitative electrophoretic mobility shift assays of different complexes show a direct correlation between the DNA bending angle and the binding affinity of the p53DBD with the response elements, i.e. the greater the stability of the complex, the more the DNA is bent by p53DBD binding. The study provides evidence that the energetics of DNA bending, as determined by the presence or absence of flexible sites in the response elements, may contribute significantly to the overall binding affinity of the p53DBD for different sequences. The results therefore suggest that both the structure and the stability of the p53-DNA complex may vary with different response elements. This variability may be correlated with variability in p53 function.  相似文献   

7.
8.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein in eukaryotic cells. The DNA binding activity of human RPA has been previously localized to the N-terminal 441 amino acids of the 70-kDa subunit, RPA70. We have used a combination of limited proteolysis and mutational analysis to define the smallest soluble fragment of human RPA70 that retains complete DNA binding activity. This fragment comprises residues 181-422. RPA181-422 bound DNA with the same affinity as the 1-441 fragment and had a DNA binding site of 8 nucleotides or less. RPA70 fragments were subjected to crystal trials in the presence of single-stranded DNA, and diffraction quality crystals were obtained for RPA181-422 bound to octadeoxycytidine. The RPA181-422 co-crystals belonged to the P2(1)2(1)2(1) space group, with unit cell dimensions of a = 34.3 A, b = 78.0 A, and c = 95.4 A and diffracted to a resolution of 2.1 A.  相似文献   

9.
Galectin-3, an animal lectin specific for beta-galactosides, is composed of three different domains. The N-terminal half of the molecule (N domain) consists of a short N-terminal segment followed by glycine-, proline-, and tyrosine-rich tandem repeats. The C-terminal domain (C domain) harbors the carbohydrate recognition domain homologous to other members of the galectin family of lectins. Galectin-3 aggregates in solution, and participation of the N domain of the molecule in this process has already been demonstrated. Using a solid-phase radioligand binding assay, which allows the direct analysis of galectin-3 self-association, here we provide evidence that the carbohydrate recognition domain of the lectin is involved in carbohydrate-dependent homophilic interactions: (a) Radiolabeled galectin-3 binds to immobilized galectin-3, and the addition of unlabeled galectin-3 in solution increases the rate of binding of radiolabeled lectin; (b) binding of radiolabeled galectin-3 to immobilized galectin-3 is inhibited by the C domain; (c) binding of radiolabeled galectin-3 to immobilized galectin-3 or the C domain is inhibited by lactose but not by sucrose; and (d) the radiolabeled C domain does not bind to immobilized C domain. Taken together, these data suggest that in addition to the N domain, the homophilic interactions of galectin-3 are mediated by the C domain.  相似文献   

10.
We report here the isolation and molecular characterization of the Drosophila homolog of the mitotic checkpoint control protein Bub3. The Drosophila Bub3 protein is associated with the centromere/kinetochore of chromosomes in larval neuroblasts whose spindle assembly checkpoints have been activated by incubation with the microtubule-depolymerizing agent colchicine. Drosophila Bub3 is also found at the kinetochore regions in mitotic larval neuroblasts and in meiotic primary and secondary spermatocytes, with the strong signal seen during prophase and prometaphase becoming increasingly weaker after the chromosomes have aligned at the metaphase plate. We further show that the localization of Bub3 to the kinetochore is disrupted by mutations in the gene encoding the Drosophila homolog of the spindle assembly checkpoint protein Bub1. Combined with recent findings showing that the kinetochore localization of Bub1 conversely depends upon Bub3, these results support the hypothesis that the spindle assembly checkpoint proteins exist as a multiprotein complex recruited as a unit to the kinetochore. In contrast, we demonstrate that the kinetochore constituents Zw10 and Rod are not needed for the binding of Bub3 to the kinetochore. This suggests that the kinetochore is assembled in at least two relatively independent pathways.  相似文献   

11.
Irritable bowel syndrome is frequently encountered in clinical practice, and it has been repeatedly suggested that abnormal colonic motor activity is one of the major pathophysiological mechanisms responsible for the origin of symptoms in such disorder. If this statement is true, then high-amplitude propagated colonic contractions (HAPCs), i.e. the mass movements, may play an important role. To test this hypothesis, we conducted an investigation by recording colonic motility for a prolonged (24 h) period in 25 patients with irritable bowel syndrome and in 18 healthy volunteers, to compare the number of mass movements over 24 h in patients (constipation-predominant, alternating bowel habits) and controls. The overall amount of motility was also assessed in twelve patients and 13 controls. We also looked for the possible changes in mass movements and motility which may occur with defecation and after a meal. The results showed that 1) with respect to HAPCs and motility index, neither group was significantly different from controls; 2) HAPCs and the motility index were significantly reduced during sleep in all groups tested; 3) HAPCs were significantly more common before as compared to after defecation and after as compared to before meals; 4) HAPCs are not independent from the segmental contractile activity; 5) the motility index/24 h was lower in the constipation-predominant group of patients with respect to controls. We conclude that in patients with irritable bowel syndrome colonic motility per se may play a pathophysiological role in the genesis of the symptoms, although other mechanisms are likely to concur, or to be responsible for the complaints of these patients. However, colonic prolonged recordings are very useful for studying physiological and pathophysiological correlates of sleep, eating, and defecation.  相似文献   

12.
The UL9 gene of herpes simplex virus type 1 (HSV-1) encodes an origin binding protein (OBP). It is an ATP-dependent DNA helicase and a sequence-specific DNA-binding protein. The latter function is carried out by the C-terminal domain of OBP (DeltaOBP). We have now performed a quantitative analysis of the interaction between DeltaOBP and its recognition sequence, GTTCGCAC, in oriS. Initially optimal conditions for binding were carefully determined. We observed that complexes with different electrophoretic mobilities were formed. A cross-linking experiment demonstrated that nonspecific complexes containing 2 or more protein monomers per DNA molecule were formed at high protein concentrations. The specific complex formed at low concentrations of DeltaOBP had an electrophoretic mobility corresponding to a 1:1 complex. We then demonstrated that the methyl groups of thymine in the major groove were essential for high affinity binding. Changes in the minor groove had considerably smaller effects. Ethylation interference experiments indicated that specific contacts were made between OBP and three phosphates in the recognition sequence. Finally, these observations were used to present a model of the surface of DNA that interacts with DeltaOBP in a sequence-specific manner.  相似文献   

13.
HOX proteins are dependent upon cofactors of the PBX family for specificity of DNA binding. Two regions that have been implicated in HOX/PBX cooperative interactions are the YPWM motif, found N-terminal to the HOX homeodomain, and the GKFQ domain (also known as the Hox cooperativity motif) immediately C-terminal to the PBX homeodomain. Using derivatives of the E2A-PBX oncoprotein, we find that the GKFQ domain is not essential for cooperative interaction with HOXA1 but contributes to the stability of the complex. By contrast, the YPWM motif is strictly required for cooperative interactions in vitro and in vivo, even with mutants of E2A-PBX lacking the GKFQ domain. Using truncated PBX proteins, we show that the YPWM motif contacts the PBX homeodomain. The presence of the GKFQ domain increases monomer binding by the PBX homeodomain 5-fold, and the stability of the HOXA1.E2A-PBX complex 2-fold. These data suggest that the GKFQ domain acts mainly to increase DNA binding by PBX, rather than providing a primary contact site for the YPWM motif of HOXA1. We have identified 2 residues, Glu-301 and Tyr-305, required for GKFQ function and suggest that this is dependent on alpha-helical character.  相似文献   

14.
Telomeres consist of tandem arrays of short G-rich sequence motifs packaged by specific DNA binding proteins. In humans the double-stranded telomeric TTAGGG repeats are specifically bound by TRF1 and TRF2. Although telomere binding proteins from evolutionarily distant species are not sequence homologues, they share a Myb-like DNA binding motif. Here we have used gel retardation, primer extension and DNase I footprinting analyses to define the binding site of the isolated Myb-like domain of TRF1 and present a three-dimensional model for its interaction with human telomeric DNA. Our results suggest that the Myb-like domain of TRF1 recognizes a binding site centred on the sequence GGGTTA and that its DNA binding mode is similar to that of the homeodomain-like motifs of the yeast telomere binding protein RAP1. The implications of these findings for recognition of telomeric DNA in general are discussed.  相似文献   

15.
Pneumocystis carinii is a common cause of life-threatening pneumonia in immunodeficient patients. Pulmonary surfactant protein A (SP-A), an alveolar glycoprotein containing collagen-like and carbohydrate recognition domains (CRD), binds P. carinii and enhances adherence to alveolar macrophages. In this study, we examined the structural basis of the interaction between SP-A and the major surface glycoprotein of P. carinii (MSG). Rat SP-A bound to purified rat P. carinii-derived MSG in a saturable and calcium-dependent manner, which was partially reversible by coincubation with excess monosaccharides, or pretreatment of MSG with N-glycanase. Mutant recombinant SP-As with neutral amino acid substitutions for the predicted calcium- and carbohydrate-coordinating residues of the CRD were synthesized in insect cells using baculovirus vectors and tested for binding to MSG. Substitutions of negatively charged (Glu195, Glu202, and Asp215) and polar residues (Asn214) of the CRD with alanine but not substitution of the Arg197 with glycine reduced the binding of SP-A to mannose-Sepharose beads and to MSG. Deletion of the N-linked oligosaccharides from SP-A by mutagenesis of the consensus sequences for glycosylation had no effect on binding. We conclude that the CRD mediates the binding of SP-A to oligosaccharides attached to MSG.  相似文献   

16.
We have examined the ability of the high-mobility group protein 1 (HMG1) to alter binding of the estrogen receptor DNA-binding domain (DBD) to the estrogen response element (ERE). HMG1 dramatically enhanced binding of purified, bacterially expressed DBD to the consensus vitellogenin A2 ERE in a dose-dependent manner. The ability of HMG1 to stabilize the DBD-ERE complex resulted in part from a decrease in the dissociation rate of the DBD from the ERE. Antibody supershift experiments demonstrated that HMG1 was also capable of forming a ternary complex with the ERE-bound DBD in the presence of HMG1-specific antibody. HMG1 did not substantially affect DBD-ERE contacts as assessed by methylation interference assays, nor did it alter the ability of the DBD to induce distortion in ERE-containing DNA fragments. Because HMG1 dramatically enhanced estrogen receptor DBD binding to the ERE, and the DBD is the most highly conserved region among the nuclear receptor superfamily members, HMG1 may function to enhance binding of other nuclear receptors to their respective response elements and act in concert with coactivator proteins to regulate expression of hormone-responsive genes.  相似文献   

17.
The biochemical activities that underlie the genetically defined activator and repressor functions of the VIVIPAROUS1 (VP1) protein have resisted in vitro analysis. Here, we show that a glutathione S-transferase (GST) fusion protein, including only the highly conserved B3 domain of VP1, has a highly cooperative, sequence-specific DNA binding activity. GST fusion proteins that include larger regions of the VP1 protein have very low activity, indicating that removal of the flanking protein sequences is necessary to elicit DNA binding in vitro. DNA competition and DNase I footprinting analyses show that B3 binds specifically to the Sph element involved in VP1 activation of the C1 gene, whereas binding to the G-box-type VP1-responsive element is of low affinity and is nonspecific. Footprint analysis of the C1 promoter revealed that sequences flanking the core TCCATGCAT motif of Sph also contribute to the recognition of the Sph element in its native context. The salient features of the in vitro GST-B3 DNA interaction are in good agreement with the protein and DNA sequence requirements defined by the functional analyses of VP1 and VP1-responsive elements in maize cells.  相似文献   

18.
DNA polymerase alpha/primase (pol alpha) isolated from fibroblasts established from a 66-year-old human donor (GM3529) exhibited decreased specific activity compared with pol alpha from either fetal-derived fibroblasts (WI38), or pSV3.neo-transformed GM3529 fibroblasts. The pol alpha specific activity decrease was correlated with a decreased proliferative capacity frequently seen in cells from aged donors. Pol alpha isolated from pSV3.neo-transformed GM3529 cells (GM3529T) exhibited a single isoform with about 10-fold higher specific activity than pol alpha from GM3529 cells. GM3529T pol alpha was immunoreactive with both anti-pol alpha and anti-SV40 large tumor antigen. Polymerases from GM3529 and GM3529T cells were treated with a pol alpha accessory protein, alpha AP, isolated from L1210 cells. Pol alpha from GM3529T cells showed no increase in activity in the presence of alpha AP, while pol alpha isolated from GM3529 cells exhibited about an 8-fold increase in activity after treatment with alpha AP. Double stranded SV40 DNA containing multiple ori sequences exhibited a greater decrease in electrophoretic mobility in the presence of GM3529T pol alpha than when treated with GM3529 pol alpha. In the presence of pol alpha from either GM35229 or GM3529T cells SV40 dsDNA exhibited a decrease in electrophoretic mobility, and in each instance addition of alpha AP resulted in an even greater decrease in DNA mobility. These data indicate that alpha AP increased pol alpha binding to SV40 dsDNA, or that alpha AP bound the DNA in addition to previously bound pol alpha. GM3529 pol alpha also bound non-specific, non-SV40, dsDNA, whereas GM3529T pol alpha with associated TAg did not bind the non-viral dsDNA unless alpha AP was added to the preparation. While not all human diploid fibroblast cell lines derived from aged human donors necessarily exhibit decreased proliferative capacity compared with cells from young donors, decreased specific activity associated with a decline in cellular DNA synthesis is typical of pol alpha from cells derived from aged human donors. We suggest that a decrease in endogenous alpha AP interaction with pol alpha may account, in part, for the loss of DNA binding affinity and specific activity of pol alpha from GM3529 cells derived from an aged donor.  相似文献   

19.
Rag-1 and Rag-2 are the critical components of the V-(D)-J recombinase required for site-specific recombination of the antigen receptor genes. In this study, we have examined the ability of recombinant (r) Rag-1 and Rag-2 to bind the recombination signal sequences (RSS) and have determined that rRag-1, but not rRag-2, is able to directly bind DNA. rRAG-1 DNA binding activity was found to reside within a novel amino-terminal arginine-rich (RR) domain with partial homology to a variety of nucleic acid binding domains. Although the RR-domain did not demonstrate RSS-specificity, this DNA binding domain may stabilize the interaction of RAG-1 with, or increase the affinity for, the V-(D)-J recombination signals.  相似文献   

20.
The recognition of DNA targets by Pax-3 is achieved through the coordinate use of two distinct helix-turn-helix-based DNA-binding modules: a paired domain, composed of two structurally independent subdomains joined by a short linker, and a paired-type homeodomain. In mouse, the activity of the Pax-3 paired domain is modulated by an alternative splicing event in the paired domain linker region that generates isoforms (Q+ and Q-) with distinct C-terminal subdomain-mediated DNA-binding properties. In this study, we have used derivatives of a classical high affinity paired domain binding site (CD19-2/A) to derive an improved consensus recognition sequence for the Pax-3 C-terminal subdomain. This new consensus differs at six out of eight positions from the C-terminal subdomain recognition motif present in the parent CD19-2/A sequence, and includes a 5'-TT-3' dinucleotide at base pairs 15 and 16 that promotes high affinity binding by both Pax-3 isoforms. However, with a less favorable guanine at position 15, only the Q- isoform retains high affinity binding to this sequence, suggesting that this alternative splicing event might serve to stabilize binding to suboptimal recognition sequences. Finally, mutagenic analysis of the linker demonstrates that both the sequence and the spacing in this region contribute to the enhanced DNA-binding properties of the Pax-3/Q- isoform. Altogether, our studies establish a clear role for the Pax-3 C-terminal subdomain in DNA recognition and, thus, provide insights into an important mechanism by which Pax proteins achieve distinct target specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号