首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《现代电子技术》2017,(16):158-160
传统无线网络故障节点定位方法无法有效处理节点功率波动以及模糊环境对故障节点定位精度的干扰。提出基于小波神经网络的无线网络故障节点定位方法,分析了小波神经网络在节点故障定位的三种作用形式,融合形式1和3对冗余节点故障进行定位,将小波神经网络当成预测器,将前一采样时刻的正常输出交叉输入n个小波神经网络,获取节点当前时刻的预测输出值,取节点预测输出值和真实输出值的残差,若该残差值高于阈值,则说明该节点是故障节点。实验结果表明,所提故障节点定位方法能够对节点的附加、倍数以及短路故障进行准确定位。  相似文献   

2.
根据模糊数学和神经网络的基本原理,建立了一个基于模糊神经网络的微光电视故障诊断系统模型,介绍了其输入变量模糊化及其神经子网络的实现、模糊规则及其神经子网络的实现,它克服了传统域值判断在临界点附近容易误判的弊端,大大提高故障检测准确率,拓宽了故障检测范围。经过大量的实在实验,证明该方法是完全可行的。  相似文献   

3.
一种基于小波神经网络的故障诊断方法   总被引:2,自引:0,他引:2  
在阐述了小波变换和BP(反向传播)神经网络概念的基础上,根据小波神经网络故障诊断的基本思想,提出了一种基于"能量-故障"的小波预处理神经网络故障诊断方法.实验仿真结果表明,使用该方法提取故障特征加快了神经网络的训练速度,能迅速地进行故障的检测和定位.  相似文献   

4.
基于径向基神经网络的旋转机械故障诊断   总被引:1,自引:0,他引:1  
汪庆华  王敬涛  邓东花 《现代电子技术》2010,33(18):141-142,150
针对旋转机械故障征兆与故障模式映射的复杂性,以及BP网络容易陷入局部极小、收敛速度慢等缺点,提出基于径向基(RBF)神经网络的风机故障诊断方法。以风机振动信号的7段频谱能量峰值作为故障特征,采用训练好的RBF网络进行故障辨识。结果表明,RBF网络能满足风机故障诊断的准确性,并在避免局部极小和节约训练时间方面有较好的实用性。  相似文献   

5.
针对BP神经网络训练过程易陷入局部极值导致训练误差收敛速度慢的问题,提出将具有全局寻优的萤火虫算法,结合BP算法共同训练神经网络。在本质上,萤火虫BP神经网络利用萤火虫算法对神经网络进行早期训练,避开局部极值点,得到优化后的神经网络初始权值后,利用BP算法的局部寻优特性对网络做进一步精细训练。轴承故障实验表明,萤火虫BP神经网络的训练误差收敛速度相比BP神经网络、萤火虫神经网络显著提升,故障识别率最高达到99.47%。  相似文献   

6.
基于改进BP神经网络的牵引变流器故障诊断   总被引:1,自引:0,他引:1  
在变流器故障诊断系统中,通过MATLAB对牵引变流器建立故障仿真模型,提取故障特征,对输入输出数据进行标幺化和模糊化的处理,并基于改进的动量BP神经网络算法,完成对变流器开关管开路的诊断,误差满足要求范围,结果表明:该算法收敛迅速,能避免陷入局部极值,而且准确率很高,是一种快速有效的方法。  相似文献   

7.
针对神经网络在故障诊断中的局限性,提出了一种将模糊理论与BP神经网络结合的故障诊断方法,使其应用到执行器故障诊断中.通过和BP神经网络学习算法对执行器故障诊断的结果比较来证明模糊神经网络算法的优越性.首先介绍执行器常见故障;其次对故障征兆进行模糊化预处理,获得了神经网络训练样本,最后应用Matlab软件进行了系统仿真.仿真结果表明:该方法收敛速度快、诊断精度高、自适应性强,能够有效地诊断执行器故障.  相似文献   

8.
基于神经网络与证据理论的模拟电路故障诊断   总被引:17,自引:0,他引:17  
论述了利用多类电量测试信息、应用神经网络与D-S证据理论实现模拟电路故障诊断的基本原理,提出了一种基于可测点电压与不同测试频率下的电路增益经决策层信息融合的故障诊断新方法.分别利用此两类测试信息,各用一个独立的改进BP网络对电路进行初步诊断,再运用所提融合诊断算法实现故障定位.模拟实验结果表明:所提方法对硬故障与元件参数偏移较小的软故障均适用,故障定位准确率高.  相似文献   

9.
《现代电子技术》2019,(7):125-128
针对开关电源电路常见故障,提出一种基于小波包神经网络的开关电源电路故障诊断方法。利用小波分析对开关电源输出电压进行分析处理,依据小波多分辨分析的特点,获得信号各频段的细节系数及其能量,再利用小波包分析对小波分析中没有细分的高频信号进行分解,提高频率分解率,将各频段能量进行归一化处理后,构造故障特征向量作为神经网络的输入进行分类。将Multisim13与Matlab可以实现开关电源电路的故障诊断。  相似文献   

10.
轴承作为用途最为广泛的零部件之一,其可以有效减缓旋转部件之间的摩擦力从而避免损坏,并且可以固定旋转轴。然而,在恶劣条件下连续工作会导致不可避免的故障。因此,对于工厂来说,进行轴承故障类型以及故障程度诊断越来越有必要。近些年来,随着深度神经网络,特别是卷积神经网络(convolutional neural network,CNN)的出现,使得智能诊断方法在精度方面取得了显著的提升。然而,在复杂的实际工业场景下,除了准确性之外,效率问题也需要提起重视。针对目前的多数CNN网络或效率低或不能检测故障程度的问题,提出了一种基于一维卷积神经网络的多输出分类的方法。方法利用提取的相关特征同时进行轴承故障类型分类和故障程度(裂纹尺寸)分类,与传统的基于CNN的多类分类相比,在多输出分类中利用相关特征提高了诊断的准确性和效率。  相似文献   

11.
基于神经网络的传感器故障诊断技术   总被引:4,自引:0,他引:4  
综述了神经网络用于控制系统的传感器故障诊断技术,阐明了应用神经网络的优越之处及其各种方法的特点。  相似文献   

12.
汽车的自动化水平是不断提高的,传统维修模式依靠专业人员的经验和能力,这对于过于复杂的系统效果不佳。同时为了提高诊断的效率和准确性,也需要采用智能化、自动化的方案。人工神经网络有良好的自学习,自适应特性,适用于非线性映射,能够克服获取知识的困难,以及知识存储跟运行速度的矛盾问题,因此可以用来开发汽车复杂控制系统的故障诊断问题。诊断过程首先归一化故障数据,设计良好的神经网络收敛算法,对关键的汽车控制系统故障模式学习,将训练好的网络用于汽车故障诊断,弥补人工经验方法的不足。  相似文献   

13.
油田的井下设备由于地下工况恶劣较容易发生故障,故及时准确地诊断出油井工况,对提高采油效率具有重要意义。本文通过对神经网络的概述,主要介绍了基于神经网络的诊断系统的设计思想和系统结构。并以有杆抽油系统故障诊断为实例验证,通过专家知识和经验、提取功图特征值,基于神经网络的故障诊断系统在具有较高的诊断效率和准确性。  相似文献   

14.
基于神经网络的故障诊断专家系统   总被引:6,自引:1,他引:6  
介绍了一种基于神经网络故障诊断专家系统,给出了系统的结构,具体描述了神经网络专家系统的基本原理。并以抽油井井下故障诊断为例说明了神经网络故障诊断的推理过程,诊断结果表明了该方法的有效性。  相似文献   

15.
基于神经网络的电气设备故障诊断   总被引:1,自引:0,他引:1  
朱晓琨 《现代电子技术》2009,32(22):130-131,134
电气设备的故障诊断对于提高生产效率具有十分重要的意义。然而,随着设备内部复杂度的不断提高,故障诊断也成为一项越来越难的工作。在分析神经网络结构及其学习算法的基础上,提出一种基于3层BP神经网络的电气故障诊断方法,并以发动机故障检测为实例,分析特征向量提取、神经网络训练等问题。通过输入样本训练及神经网络测试表明,神经网络在故障检测诊断问题中具有很高的实用价值。  相似文献   

16.
基于神经网络的故障诊断专家系统   总被引:2,自引:2,他引:2  
描述了人工神经网络的基本原理及其在故障诊断专家系统中的应用。分析了基于人工神经网络的故障诊断专家系统的设计思想、系统结构及知识表示、知识获取和推理机制等方面的基本方法。  相似文献   

17.
本文以某型飞机电力起动系统为对象,介绍了如何将神经网络应用于飞机电力起动系统的故障诊断,较好地解决了利用故障字典法对该系统实施故障诊断时所存在的缺乏自组织、自学习能力和测试信号选取受限等弊端,建立了该系统的故障样本并对其进行了仿真研究。  相似文献   

18.
关键输电断面是电网的薄弱环节,对关键断面状态监测、保障电力系统安全可靠与稳定运行有着重要作用。为避免大事故发生,通过卷积神经网络(CNN)故障识别进行“判面-判线-判相”。首先,以IEEE 14节点系统进行关键输电断面搜索,并用Matlab/Simulink批量获得输电断面故障样本数据,将样本数据归一化处理之后转化为灰度图;然后,通过不同层数网络结构及每层结构参数调试,用7种优化算法进行对比分析,选取充分适应电网故障诊断模型,并引入Dropout过拟合处理和Batch Normalization批标准化加速网络训练,利用选定好的卷积神经网络以交叉熵最小目标对故障样本数据的深层特征进行挖掘;最后,将获得的故障样本数据使用Anaconda平台实验,建立Keras框架设计卷积神经网络模型实现训练测试,并在实验中与AlexNet模型对比。结果表明该模型识别准确率分别提高了0.45%、0.8%、0.3%。  相似文献   

19.
秦恺  曹龙汉  牟浩  文迪  张迁 《UPS应用》2014,(3):47-50
针对柴油机气门故障的诊断样本少和非线性数据特征等问题,文中提出了一种基于学刁向量量化(LVQ,LearningVectorquantization)神经网络集成的柴油机故障诊断方法,该方法通过使飘LVQ神经两络作为基础学习器.采用Bagging算法对LVQ神经网络分类器进行相对多数投票集成,并用LVQ神经网络.LVQ神经网络集成.BP神经网络和RBF神经网络等方法对柴油机气门故障诊断.对评价结果进行了分析和比较,LVQ神经网络集成对柴油机气门故障诊断的正确率高于其他神经网络,神经网络集成的柴油机气门故障诊断精度高于单个神经网络的精度.  相似文献   

20.
《现代电子技术》2017,(5):174-177
模拟电路的元件较多,相互之间的耦合性较强,容易发生故障。为了提高电路故障的诊断准确性,提出小波变换和神经网络的电路故障诊断方法。首先采用小波变换方法提取电路故障信息特征,然后采用神经网络分类提取的故障特征量实现对电路故障的诊断和分类识别,最后通过仿真实验进行性能测试,结果表明,该方法提高了电路故障检测的准确度,具有较好的实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号