首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
通过Fe2(SO4)3/γ-Al2O3对1-丁烯齐聚反应催化性能的考察,发现该催化剂在温和的条件下对1-丁烯齐聚反应具有高的催化活性和二聚物、三聚物选择性。氨不可逆吸附测定及NaOH中毒试验结果表明,Fe2(SO4)3/γ-Al2O3催化剂上1-丁烯齐聚反应是以酸催化机理进行的。通过与FeCl3/γ-Al2O3及SO2-4/γ-Al2O3催化1-丁烯齐聚反应的对比,进一步肯定了SO2-4及其与γ-Al2O3相互作用对产生新的酸中心有重要的作用。  相似文献   

2.
研究开发了一种具有高催化活性和高低碳烯烃选择性的K-Fe-MnO/Si-2担载型催化剂;考察了V(CO2)/V(H2)比、反应温度、反应气空速和反应压力对K-Fe-MnO/Si-2催化剂CO2加氢反应制低碳烯烃选择性及催化活性的影响;考察催化剂稳定性及再生性能,对催化剂进行差热-热重分析结果表明,K-Fe-MnO/Si-2催化剂具有很好的催化稳定性能。  相似文献   

3.
介绍了SO_4~(2-)/M_xO_y型团体超强酸催化剂的结构、制备方法、酸强度及酸性中心的测试和表征的最新研究成果。详细讨论了SO_4~(2-)/M_xO_y催化剂对酯化、饱和烃的异构化、裂化、齐聚和酸化等反应的催化作用。表明SO_4~(2-)/M_xO_y型超强酸催化剂比其他固体酸催化剂具有更高的催化活性和广阔的应用前景。关键词:  相似文献   

4.
CO2加氢制低碳烯烃的Fe/Silicalite—2催化剂研究   总被引:12,自引:3,他引:9  
K-Fe-MnO/Si-2催化剂具有较佳的C2氢合成低碳烯烃性能,并随碱金属钾助剂的添加而明显改善,其C2氢反应具有(1)CO2+H2--C+H2O和(2)CO+m/2n+1)H2-1/nCnHm+H2O两小反应机理;应用该反应机理,解释了CO2/H2比、反应温度、板应压力、反应气空速等对K-Fe-MnO/SI-2催化剂CO2加氢反应性能的影响;探讨了催化剂中K2O助剂的作用。  相似文献   

5.
K-Fe-MnO/Si-2催化剂具有较佳的CO2加氢合成低碳烯烃性能,并随碱金属钾助剂的添加而明显改善;其CO2加氢反应具有(1)CO2+H2CO+H2O和(2)CO+(m/2n+1)H21/nCnHm+H2O两步反应机理;应用该反应机理,解释了CO2/H2比、反应温度、反应压力、反应气空速等对K-Fe-MnO/Si-2催化剂CO2加氢反应性能的影响;探讨了催化剂中K2O助剂的作用。  相似文献   

6.
SO_4~(2-)-Fe_2O_3/Hβ增强酸催化剂上合成乙酸丁酯   总被引:1,自引:0,他引:1  
将超强酸中心引入Hβ沸石表面,制备出具有增强酸性的SO2-4-Fe2O3/Hβ催化剂,并用于乙酸与正丁醇的酯化反应。采用数学模拟方法定量表征该催化剂的酸强度分布。建立了合成乙酸丁酯反应动力学模型。讨论不同类型沸石、氧化物改性对酯化反应性能的影响及表面酸性与酯化性能的关系。  相似文献   

7.
CO2加氢制低碳烯烃Fe/Silicalite—2催化剂研究:Ⅲ,K—F…   总被引:1,自引:1,他引:0  
研究开发了一种具有高催化活性和高低碳烃烃选择性的K-Fe-MnO/Si-2担载型催化剂:考察了V(CO2)/V(H2)比、反应温度,反应气空速和反应压力对K-Fe-MnO/Si-2催化剂CO2加氢反应制低碳烯烃选择性及催化活性的影响;  相似文献   

8.
K2O是催化剂Fe-MnO/Silicalite-2由合成气制低碳烯烃的有效助剂,K2O能明显提高催化剂活性及低碳烯烃选择性。K2O助剂将抑制部分铁的还原,但能增强催化剂对CO的吸附能力,从而能提高催化剂活性,抑制甲烷的生成,K2O助剂能抑制乙烯在催化剂表面的二次反应(尤其是乙烯的歧化反应),从而提高CO/H及反应制低碳烯烃的选择性。  相似文献   

9.
对TiO2、Mn/TiO2、La/TiO2、La-Mn/TiO2、Li-Mn/TiO2、Li-La/TiO2和Li-La-Mn/TiO2等系列钛基甲烷氧化偶联催化剂的催化性能进行了考察,并用XRD和XPS对该系列催化剂进行了表征。实验结果表明,Li-La-Mn/TiO2催化剂对甲烷氧化偶联反应具有较高的反应活性和C2烃选择性。催化剂中Ti组分主要以+4价存在;Li组分能促进La与TiO2的相互作用,而形成钛酸镧,使La组分在催化剂表面的浓度减小,而Li组分本身则主要是以Li2SO4状态存在于催化剂中,是Mn/TiO2、La/TiO2、La-Mn/TiO2等催化剂的优良添加剂。Mn组分主要以低价(+2、+3)氧化物分布于催化剂表面,La、Mn的添加主要是使甲烷活化,提高催化剂的活性,Li组分的添加主要是提高甲烷氧化偶联反应的选择性即C2烃收率。  相似文献   

10.
超强酸催化剂SO^2—4—MoO3—ZrO2的制备与表征   总被引:5,自引:0,他引:5  
合成了新型固体超强酸催化剂SO^2-4-MoO3-ZrO2。考察了该催化剂在乙酸乙酯合成反应中的催化活性。用XRD,AES,SEM,比表面测定等技术研究了催化剂的结构形态和性质,并与SO^2-4-ZrO2,MoO3-ZrO2进行了比较,结果表明,SO^2-4-MoO3-ZrO2的催化活性比SO^2-4-ZrO2和MoO3-ZrO2高。MoO3的存在明显地提高了催化剂的比表面,并且具有稳定介稳的四方  相似文献   

11.
制备了复合氧化物固体超强酸催化剂Pt-SO4^2-/ZrO2-Al2O3,通过XRD、XPS、SEM、FT-IR等手段研究了其结构、表面性质及其对正丁烷异构化反应的催化活性。结果表明,适量的Al2O3稳定T四方品相的ZrO2,抑制了ZrO2由四方晶相向单斜晶相的转变。掺杂Pt提高了正丁烷异构化反应的催化活性。采用W(Al)=1.5%的催化剂,异丁烷最高收率达37%,选择性达70%。  相似文献   

12.
以纯硅SBA-15为载体,合成了具有纯硅SBA-15结构的介孔分子筛催化剂ZrO2/SBA-15。用此催化剂催化合成柠檬酸正丁酯,考察了催化剂中硅锆摩尔比、催化剂用量、反应时间、反应温度、酸醇摩尔比对酯化反应的影响,得出合成柠檬酸正丁酯的最佳反应条件:催化剂中最佳硅锆摩尔比为100:3,正丁醇用量2mol,酸醇摩尔比1:6,催化剂用量为原料质量的2%,反应温度130℃,反应5h,柠檬酸转化率为88%。介孔分子筛催化剂ZrO2/SBA-15具有较高的稳定性,是合成柠檬酸三丁酯较为理想的分子筛催化剂。  相似文献   

13.
采用浸渍法制备了SO42-/SnO2固体超强酸多相催化剂,用XRD、TPD和FT-IR光谱法对SO42-/SnO2的结构和表面酸性进行了表征。并用于亚油酸与乙醇反应合成亚油酸乙酯,研究了催化剂制备过程中硫酸浸渍浓度、焙烧温度对亚油酸与乙醇酯化反应的影响规律。制备催化剂适宜的工艺条件为:硫酸浸渍浓度2.0 mol/L,浸渍时间4 h,焙烧温度500℃,焙烧时间4 h,制备的SO42-/SnO2催化剂对亚油酸的酯化率可达91.5%。  相似文献   

14.
以五水硝酸锆和九水硅酸钠为锆源和硅源、过硫酸铵为浸渍液,采用共沉淀法制备了S2O82-/ZrO2-SiO2固体超强酸催化剂,并对催化剂进行了XRD,FTIR,SEM表征。以硬脂酸和正丁醇酯化合成硬脂酸正丁酯反应为探针,考察了催化剂制备条件和反应条件对酯化反应的影响。表征结果显示,SiO2的引入延迟了ZrO2的晶化和晶相的转化,当焙烧温度为550℃时,催化剂中四方晶型ZrO2结构和单斜晶型ZrO2结构同时存在,催化剂表面呈针状。在n(硝酸锆)∶n(硅酸钠)=2.0∶1.5、浸渍液过硫酸铵浓度0.5 mol/L、浸渍时间2 h、焙烧温度450℃、焙烧时间3 h的条件下制备的S2O82-/ZrO2-SiO2固体超强酸的催化活性较好。酯化反应的适宜条件为:硬脂酸用量5.7 g、n(硬脂酸)∶n(正丁醇)=1∶3、催化剂用量0.2 g、反应温度120℃、反应时间2.5 h;在此条件下,酯化率可达98.3%。  相似文献   

15.
共沉淀法制备复合氧化物固体超强酸催化剂 SO2 - 4 / Zr O2 Ti O2 ,用于常压气相法苯胺与甲醇反应合成N,N二甲基苯胺 ( DMA)。实验结果表明 ,催化剂有良好的催化活性 ,苯胺转化率 >98% ,DMA的选择性 >96% ,催化剂使用 1 4 0 0 h后仍具有良好的活性。研究了温度、原料配比及空速对反应的影响 ,探讨了催化剂酸中心类型、酸强度与活性的关系。  相似文献   

16.
采用浸渍法制备了固体超强酸 SO2 -4 / Zr O2 Ti O2 多相催化剂 ,用于催化丙烯酸与异丁醇反应合成丙烯酸异丁酯 (IBA)。研究了催化剂制备及 IBA合成的适宜工艺条件 :H2 SO4 浓度为 0 .6mol/ L,焙烧温度550℃ ,焙烧时间 4 h,丙烯酸与异丁醇的摩尔比为 1∶ 1 .2 0 ,催化剂和阻聚剂用量分别为丙烯酸质量的 4 %和0 .0 5% ,反应温度 1 2 5℃ ,反应时间 2 .5h。实验结果表明 ,催化剂有良好的催化活性 ,丙烯酸的酯化率可达84 .6%  相似文献   

17.
环烷酸在酸性催化剂上的催化转化研究   总被引:2,自引:1,他引:1  
在重油微反装置上进行了环烷酸在酸性催化剂上的催化转化研究,考察了反应温度、催化剂装填量以及掺混直馏柴油对环烷酸转化率和脱酸效果的影响,并与环烷酸的热转化反应进行了比较。结果表明,环烷酸在酸性催化剂上的催化脱酸反应很容易进行,在较低的反应温度下(400℃)脱酸率接近100%;而相同条件下的热脱酸效果较差。反应温度和催化剂装填量的改变不影响环烷酸的脱酸率,但是会影响转化率与产物分布,其影响规律与常规催化裂化相似。环烷酸的脱酸反应生成CO和CO_2,但以CO为主。直馏柴油的加入并不影响环烷酸的催化脱酸效果。  相似文献   

18.
介孔S2O82-/SnO2固体超强酸催化合成草酸二异戊酯   总被引:1,自引:0,他引:1  
以SnCl4o5H2O和聚乙二醇6000为模板剂,采用模板法合成中孔S2O82-/SnO2固体超强酸催化剂,用Hammett指示剂法、TGA-DTA、XRD、N2-吸附进行了表征,以草酸与异戊醇的酯化反应为探针反应,探讨了S2O82?/SnO2固体超强酸的催化活性,研究了焙烧温度、酸/醇比、催化剂加入量、反应时间等对反应酯化率的影响。结果表明:介孔S2O82?/SnO2固体超强酸催化剂具有四方晶系结构,S2O82-可延迟SnO2的晶化、抑制SnO2晶粒长大,对草酸二异戊酯的合成具有良好的催化活性;在催化剂的焙烧温度为500℃、n(异戊醇):n(草酸)=3:1、带水剂甲苯加入量为30 mL 、m(催化剂):m(草酸)=7.5、反应时间为2.5 h 的条件下,草酸二异戊酯收率可达到 99.2%;在中国石油抚顺石化公司石油一厂催化裂化柴油中添加草酸二异戊酯后十六烷值可提高 1.2~3.0 个单位,而其它性质无明显变化。  相似文献   

19.
采用连续流动的固定床微反装置考察了Pt/SO24-/ZrO2-Al2O3(PSZA)在正己烷异构化反应中的催化行为。采用NH3-TPD、H2-TPR及TG表征了催化剂的酸性、还原性能及硫物种含量。结果表明,PSZA的初始异构化催化活性几乎不受反应温度的影响,而稳定性则与反应温度密切相关。低温下反应,催化剂在短时间内迅速失活,而提高反应温度可大大提高PSZA的反应稳定性。PSZA具有良好的再生性能,与新鲜催化剂相比,多次再生后的催化剂异构化催化活性基本没有变化。PSZA在低温下的快速失活与其催化活性中心产生的机理有关,而与其硫损失或硫物种的还原无关。在异构化反应过程中,催化剂通过氢溢流可产生强酸活性中心,并在反应过程中不断被消耗;在高温下通过氢溢流不断产生新的强酸中心,使催化活性保持稳定;而低温下氢溢流难以发生,消耗的强酸活性中心不能及时补充,使催化活性下降。  相似文献   

20.
制备了一种非酸固体催化剂 ,考察了该催化剂催化合成癸二酸二异辛酯的工艺条件 ,在优化条件下 ,癸二酸二异辛酯的收率为 99% .优化条件为醇酸摩尔比 2 .8,反应温度 2 2 0℃ ,催化剂用量 1 % ,反应时间 2 .5h。该催化剂对其它一些癸二酸双酯和己二酸双酯的合成也具有良好的催化活性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号