首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
无人机在整个纵平面飞行过程中,由于飞行姿态角的大幅度变化以及气流的作用,导致机身颤抖,影响飞行稳定性.提出一种基于PID变结构控制的无人机飞行姿态角控制消颤算法,首先进行了无人机飞行姿态角控制系统的被控对象参量分析,构建无人机在姿态角变化剧烈、大迎角飞行时的三通道模型,采用变结构控制方法进行控制器设计.结合小扰动原理和Lyapunov稳定性原理进行扰动抑制和稳定性证明,采用梯度算法调整权值进行飞行姿态角控制的消颤处理,采用自适应算法在线调整权值实现PID变结构控制改进.仿真结果表明:采用该算法进行无人机飞行姿态角控制和消颤处理,大幅度提高无人机飞行定姿的精度,横滚角、俯仰角和航向角的控制精度有较大提高,稳定性和收敛性较好,确保了无人机飞行稳定性.  相似文献   

2.
成怡  金海林  樊冬雪 《计算机测量与控制》2014,22(11):3705-37073711
为实现四轴飞行器的自主飞行,设计了该视觉导航系统;采用基于ARM处理器的飞行控制器和导航控制器的双CPU结构,提高了系统的运行速度;飞行控制部分采用四元数解算姿态,运用经典的PID控制设计了X、Y、Z三个轴的PID控制器进行整个系统的飞行控制;导航部分采用不敏卡尔曼滤波(UKF)融合惯导位置和视觉位置,从而给出载体最优位置,提高导航精度;实验结果表明,基于图像和惯性导航的视觉组合导航方式可使导航精度保持在0.5m内,同时整个系统具有较好的快速性和稳定性。  相似文献   

3.
针对无人机在实际飞行过程中受到外部环境影响大,控制精度不够高的问题;研究了一种模糊参数自整定PID控制方法来完成对无人机的纵向姿态的控制;该方法在传统的PID控制的基础上,利用无人机实际飞行中的数据,建立起模糊控制规则来实现PID参数自整定,最后在通过建立的纵向姿态模型上进行仿真控制,得出仿真曲线;仿真实验结果表明,所设计的模糊PID控制器,相比于传统的PID控制器具有更好的控制性能,并且具有很好的抗干扰能力,能够满足无人机控制系统的要求。  相似文献   

4.
转台伺服控制系统的PID--模糊复合控制算法的研究   总被引:2,自引:2,他引:0  
本文对转台伺服控制系统的控制算法进行了研究,对PID控制算法和模糊控制算法的原理进行了简单的叙述和对比,提出了基于这两种控制算法的复合控制算法,此算法是基于前两种控制算法的各自优点,依据转台在工作状态的各个阶段速度和位置偏差的不同,分别采用不同的控制算法,使转台具有更好的动、静态性能,更好的模拟飞行器的飞行状态.  相似文献   

5.
转台伺服控制系统的PID—模糊复合控制算法的研究   总被引:1,自引:1,他引:1  
本文对转台伺服控制系统的控制算法进行了研究,对PID控制算法和模糊控制算法的原理进行了简单的叙述和对比,提出了基于这两种控制算法的复合控制算法,此算法是基于前两种控制算法的各自优点,依据转台在工作状态的各个阶段速度和位置偏差的不同,分别采用不同的控制算法,使转台具有更好的动、静态性能,更好的模拟飞行器的飞行状态。  相似文献   

6.
无人直升机在悬停/小速度飞行阶段具有特殊的物理特性,给控制系统的设计带来了诸多技术难题;针对无人直升机悬停/小速度段位置控制的需求,提出了一种基于"姿态角阻尼内回路"的位置控制结构,该控制结构采用内回路姿态角阻尼增稳,外回路位置控制的控制方式;并且针对增稳回路自适应性、抗风补偿和位置控制精度等问题,分别采用前馈自动配平机制与非线性PID控制方法对常规控制律进行改进;仿真验证表明,所提出的控制策略和控制律设计结果达到了较好的控制效果。  相似文献   

7.
针对四旋翼无人机抗干扰姿态控制系统抗干扰能力较差,控制性能较差的问题;文章提出基于混合滤波的四旋翼无人机抗干扰姿态控制系统,优化设计了系统的硬件和软件部分;硬件部分设计主控制器,通过发生器输出的PWM波信号控制电速;设计传感器模块,测量姿态角与加速度等数据,采用双陀螺仪和双加速度计结构,避免共振对测量结果产生影响;设计电机驱动模块,选用X2216型无刷直流电机为运行提供较高的转速和响应速度;设计无线数据传输模块,选用3DR无线数据传输模块实时监测姿态信位置信息数据;构建基于混合滤波的四旋翼无人机抗干扰姿态控制系统,对角速度数据、加速度数据等数进行融合改正,再运用互补滤波器对陀螺仪和加速度计进行信号检测和控制调度,得到精确的实时姿态角;采用姿态控制算法和串级PID控制策略,提高对系统的控制力,保证飞行的平稳;实验结果表明,基于混合滤波的四旋翼无人机抗干扰姿态控制系统抗干扰性强、控制能力高以及响应速度快。  相似文献   

8.
马敏  许中冲  常辰飞  薛倩 《测控技术》2016,35(10):42-45
为提高四旋翼无人机的飞行稳定性、无人飞行器控制系统的鲁棒性和控制精度,以建立的四旋翼无人机飞行控制系统模型为基础,采用现代控制理论与传统控制论相结合的方法,针对姿态角速率、姿态角分别设计内环LQR(线性二次型调节器)控制器,及外环PID控制的双回路闲环控制器.充分利用PID控制器易于掌握且对模型要求精度低、LQR控制器能改善内回路的动态特性和稳态性能的特点,完成四旋翼无人机的飞行控制.通过实验遴选该双闭环控制器相关参数并进行优化,实验结果表明所设计的双回路控制器控制性能指标良好.  相似文献   

9.
为了提高采用转台对惯性导航系统和惯性仪表进行误差模型标定时的可靠性和精度,对角位置转台的控制系统进行了研究;首先借助NI公司PXI-8101控制器和功能强大的数据采集卡PXIe-6363对转台控制系统进行了硬件设计;随后在对转台常规PID控制方法研究的基础上提出了一种能随系统调节偏差自动改变积分项累加速度的变速PID控制方法;接着又对基于软件实现的双通道旋转变压器轴角解调算法进行了研究并提出了一种粗精组合角纠错方法;最后文章设计的转台控制系统进行了测试实验,结果表明提出的轴角解调算法具有较好的解码速度和精度,并且变速PID控制方法大大提高了转台控制系统的自学习能力和鲁棒性,显著地改善了转台控制过程的稳定性.  相似文献   

10.
飞行控制系统半物理仿真中三轴转台姿态信号精确测量是实现闭环飞行控制仿真可靠、稳定运行的关键;文章介绍了一种基于CPLD的三轴转台姿态信号测量板卡,采用原理图和VHDL硬件描述语言完成了CPLD内部逻辑电路的设计;板卡上一片CPLD芯片完成了三轴转台姿态信号的实时测量与数据处理,C8051F005单片机实现与上位机的数据通信和指令的接收;测量数据和上位机指令均采用Modbus协议在RS485总线上传输;在半物理仿真中的实测结果表明:姿态角测量误差小于3″,使用CPLD降低了成本,提高了数据处理速度和计算精度,数据传输稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号