共查询到20条相似文献,搜索用时 0 毫秒
1.
This article investigates the assignment of tasks with interdependencies in a heterogeneous multiprocessor environment; specific to this problem, task execution time varies depending on the nature of the tasks as well as with the processing element assigned. The solution to this heterogeneous multiprocessor scheduling problem involves the optimization of complete task assignments and processing order between the assigned processors to arrive at a minimum makespan, subject to a precedence constraint. To solve an NP-hard combinatorial optimization problem, as is typified by this problem, this paper presents a hybrid evolutionary algorithm that incorporates two local search heuristics, which exploit the intrinsic structure of the solution, as well as through the use of specialized genetic operators to promote exploration of the search space. The effectiveness and contribution of the proposed features are subsequently validated on a set of benchmark problems characterized by different degrees of communication times, task, and processor heterogeneities. Preliminary results from simulations demonstrate the effectiveness of the proposed algorithm in finding useful schedule sets based on the set of new benchmark problems. 相似文献
2.
Segmentation of a polygonal mesh is a method of breaking the mesh down into ‘meaningful’ connected subsets of meshes called regions or features. Several methods have been proposed in the past and they are either vertex based or edge based. The vertex method used here is based on the watershed segmentation scheme which appears prominently in the image segmentation literature and was later applied to the 3D segmentation problem [9] and [10]. Its main drawback is that it is a vertex based method and no hard boundaries (edges) are created for the features or regions. Edge based methods rely on the dihedral angle between polygon faces to determine if the common edge should be classified as a Feature Edge. However, this method results in many disconnected edges and thereby incomplete feature loops.We propose a hybrid method which takes advantage of both methods mentioned earlier and create regions with complete feature loops. Satisfactory results have been achieved for both CAD parts as well as other laser scanned objects such as bones and ceramic vessels. 相似文献
3.
The Journal of Supercomputing - Speculative multithreading (SpMT) is a thread-level automatic parallelization technique to accelerate sequential programs. Machine learning has been successfully... 相似文献
4.
During the last few years there has been marked attention towards hybrid and ensemble systems development, having proved their ability to be more accurate than single classifier models. However, among the hybrid and ensemble models developed in the literature there has been little consideration given to: 1) combining data filtering and feature selection methods 2) combining classifiers of different algorithms; and 3) exploring different classifier output combination techniques other than the traditional ones found in the literature. In this paper, the aim is to improve predictive performance by presenting a new hybrid ensemble credit scoring model through the combination of two data pre-processing methods based on Gabriel Neighbourhood Graph editing (GNG) and Multivariate Adaptive Regression Splines (MARS) in the hybrid modelling phase. In addition, a new classifier combination rule based on the consensus approach (ConsA) of different classification algorithms during the ensemble modelling phase is proposed. Several comparisons will be carried out in this paper, as follows: 1) Comparison of individual base classifiers with the GNG and MARS methods applied separately and combined in order to choose the best results for the ensemble modelling phase; 2) Comparison of the proposed approach with all the base classifiers and ensemble classifiers with the traditional combination methods; and 3) Comparison of the proposed approach with recent related studies in the literature. Five of the well-known base classifiers are used, namely, neural networks (NN), support vector machines (SVM), random forests (RF), decision trees (DT), and naïve Bayes (NB). The experimental results, analysis and statistical tests prove the ability of the proposed approach to improve prediction performance against all the base classifiers, hybrid and the traditional combination methods in terms of average accuracy, the area under the curve (AUC) H-measure and the Brier Score. The model was validated over seven real world credit datasets. 相似文献
5.
针对篇章级别情感文本分类问题,分析了传统的生成式模型和判别式模型的性能,提出了一种级联式情感文本分类混合模型以及句法结构特征扩展策略.在该模型中,生成式模型(朴素贝叶斯分类器)和判别式模型(支持向量机)以级联的方式进行组合,旨在消除对于分类临界样本,模型判决置信度不足引起的误差.在混合模型的基础上,提出了一种高效扩展依存句法特征的策略.该策略既提高了系统的正确率,又避免了传统特征扩展方法所带来的计算量增加的问题.实验结果表明,混合模型及特征扩展策略与传统方法相比,在算法准确性和效率上,都有显著的提高. 相似文献
6.
Nowadays, automatic speech emotion recognition has numerous applications. One of the important steps of these systems is the feature selection step. Because it is not known which acoustic features of person’s speech are related to speech emotion, much effort has been made to introduce several acoustic features. However, since employing all of these features will lower the learning efficiency of classifiers, it is necessary to select some features. Moreover, when there are several speakers, choosing speaker-independent features is required. For this reason, the present paper attempts to select features which are not only related to the emotion of speech, but are also speaker-independent. For this purpose, the current study proposes a multi-task approach which selects the proper speaker-independent features for each pair of classes. The selected features are then given to the classifier. Finally, the outputs of the classifiers are appropriately combined to achieve an output of a multi-class problem. Simulation results reveal that the proposed approach outperforms other methods and offers higher efficiency in terms of detection accuracy and runtime. 相似文献
7.
Software Product Line (SPL) customizes software by combining various existing features of the software with multiple variants. The main challenge is selecting valid features considering the constraints of the feature model. To solve this challenge, a hybrid approach is proposed to optimize the feature selection problem in software product lines. The Hybrid approach ‘Hyper-PSOBBO’ is a combination of Particle Swarm Optimization (PSO), Biogeography-Based Optimization (BBO) and hyper-heuristic algorithms. The proposed algorithm has been compared with Bird Swarm Algorithm (BSA), PSO, BBO, Firefly, Genetic Algorithm (GA) and Hyper-heuristic. All these algorithms are performed in a set of 10 feature models that vary from a small set of 100 to a high-quality data set of 5000. The detailed empirical analysis in terms of performance has been carried out on these feature models. The results of the study indicate that the performance of the proposed method is higher to other state-of-the-art algorithms. 相似文献
8.
We consider a vehicle routing problem with a heterogeneous fleet of vehicles having various capacities, fixed costs and variable costs. An approach based on column generation (CG) is applied for its solution, hitherto successful only in the vehicle routing problem with time windows. A tight integer programming model is presented, the linear programming relaxation of which is solved by the CG technique. A couple of dynamic programming schemes developed for the classical vehicle routing problem are emulated with some modifications to efficiently generate feasible columns. With the tight lower bounds thereby obtained, the branch-and-bound procedure is activated to obtain an integer solution. Computational experience with the benchmark test instances confirms that our approach outperforms all the existing algorithms both in terms of the quality of solutions generated and the solution time. 相似文献
9.
Pattern Analysis and Applications - Classification is one of the most important topics in machine learning. However, most of these works focus on the two-class classification (i.e., classification... 相似文献
10.
Rule learning is one of the most common tasks in knowledge discovery. In this paper, we investigate the induction of fuzzy classification rules for data mining purposes, and propose a hybrid genetic algorithm for learning approximate fuzzy rules. A novel niching method is employed to promote coevolution within the population, which enables the algorithm to discover multiple rules by means of a coevolutionary scheme in a single run. In order to improve the quality of the learned rules, a local search method was devised to perform fine-tuning on the offspring generated by genetic operators in each generation. After the GA terminates, a fuzzy classifier is built by extracting a rule set from the final population. The proposed algorithm was tested on datasets from the UCI repository, and the experimental results verify its validity in learning rule sets and comparative advantage over conventional methods. 相似文献
11.
A remedy has been found for hierarchical classifiers which relieves the tendency toward misclassification and/or ‘reject’ decisions with the Kulkarni-Kanal S-admissible search strategy, when empty bins are present in the histograms derived by discretization of feature ranges. 相似文献
13.
We focus on a hybrid approach of feature selection. We begin our analysis with a filter model, exploiting the geometrical information contained in the minimum spanning tree (MST) built on the learning set. This model exploits a statistical test of relative certainty gain, used in a forward selection algorithm. In the second part of the paper, we show that the MST can be replaced by the 1 nearest-neighbor graph without challenging the statistical framework. This leads to a feature selection algorithm belonging to a new category of hybrid models ( filter-wrapper). Experimental results on readily available synthetic and natural domains are presented and discussed. 相似文献
14.
Data mining algorithms such as data classification or clustering methods exploit features of entities to characterise, group or classify them according to their resemblance. In the past, many feature extraction methods focused on the analysis of numerical or categorical properties. In recent years, motivated by the success of the Information Society and the WWW, which has made available enormous amounts of textual electronic resources, researchers have proposed semantic data classification and clustering methods that exploit textual data at a conceptual level. To do so, these methods rely on pre-annotated inputs in which text has been mapped to their formal semantics according to one or several knowledge structures (e.g. ontologies, taxonomies). Hence, they are hampered by the bottleneck introduced by the manual semantic mapping process. To tackle this problem, this paper presents a domain-independent, automatic and unsupervised method to detect relevant features from heterogeneous textual resources, associating them to concepts modelled in a background ontology. The method has been applied to raw text resources and also to semi-structured ones (Wikipedia articles). It has been tested in the Tourism domain, showing promising results. 相似文献
15.
In this paper we present a hierarchical approach for generating fuzzy rules directly from data in a simple and effective way. The fuzzy classifier results from the union of fuzzy systems, employing the Wang and Mendel algorithm, built on input regions increasingly smaller, according to a multi-level grid-like partition. Key parameters of the proposed method are optimized by means of a genetic algorithm. Only the necessary partitions are built, in order to guarantee high interpretability and to avoid the explosion of the number of rules as the hierarchical level increases. We apply our method to real-world data collected from a photovoltaic (PV) installation so as to linguistically describe how the temperature of the PV panel and the irradiation relate to the class ( low, medium, high) of the energy produced by the panel. The obtained mean and maximum classification percentages on 30 repetitions of the experiment are 97.38% and 97.91%, respectively. We also apply our method to the classification of some well-known benchmark datasets and show how the achieved results compare favourably with those obtained by other authors using different techniques. 相似文献
16.
Discriminative classifiers are a popular approach to solving classification problems. However, one of the problems with these approaches, in particular kernel based classifiers such as support vector machines (SVMs), is that they are hard to adapt to mismatches between the training and test data. This paper describes a scheme for overcoming this problem for speech recognition in noise by adapting the kernel rather than the SVM decision boundary. Generative kernels, defined using generative models, are one type of kernel that allows SVMs to handle sequence data. By compensating the parameters of the generative models for each noise condition noise-specific generative kernels can be obtained. These can be used to train a noise-independent SVM on a range of noise conditions, which can then be used with a test-set noise kernel for classification. The noise-specific kernels used in this paper are based on Vector Taylor Series (VTS) model-based compensation. VTS allows all the model parameters to be compensated and the background noise to be estimated in a maximum likelihood fashion. A brief discussion of VTS, and the optimisation of the mismatch function representing the impact of noise on the clean speech, is also included. Experiments using these VTS-based test-set noise kernels were run on the AURORA 2 continuous digit task. The proposed SVM rescoring scheme yields large gains in performance over the VTS compensated models. 相似文献
18.
In this paper, we propose a hybrid speech enhancement system that exploits deep neural network (DNN) for speech reconstruction and Kalman filtering for further denoising, with the aim to improve performance under unseen noise conditions. Firstly, two separate DNNs are trained to learn the mapping from noisy acoustic features to the clean speech magnitudes and line spectrum frequencies (LSFs), respectively. Then the estimated clean magnitudes are combined with the phase of the noisy speech to reconstruct the estimated clean speech, while the LSFs are converted to linear prediction coefficients (LPCs) to implement Kalman filtering. Finally, the reconstructed speech is Kalman-filtered for further removing the residual noises. The proposed hybrid system takes advantage of both the DNN based reconstruction and traditional Kalman filtering, and can work reliably in either matched or unmatched acoustic environments. Computer based experiments are conducted to evaluate the proposed hybrid system with comparison to traditional iterative Kalman filtering and several state-of-the-art DNN based methods under both seen and unseen noises. It is shown that compared to the DNN based methods, the hybrid system achieves similar performance under seen noise, but notably better performance under unseen noise, in terms of both speech quality and intelligibility. 相似文献
19.
In hierarchical classification, classes are arranged in a hierarchy represented by a tree or a forest, and each example is labeled with a set of classes located on paths from roots to leaves or internal nodes. In other words, both multiple and partial paths are allowed. A straightforward approach to learn a hierarchical classifier, usually used as a baseline method, consists in learning one binary classifier for each node of the hierarchy; the hierarchical classifier is then obtained using a top-down evaluation procedure. The main drawback of this naive approach is that these binary classifiers are constructed independently, when it is clear that there are dependencies between them that are motivated by the hierarchy and the evaluation procedure employed. In this paper, we present a new decomposition method in which each node classifier is built taking into account other classifiers, its descendants, and the loss function used to measure the goodness of hierarchical classifiers. Following a bottom-up learning strategy, the idea is to optimize the loss function at every subtree assuming that all classifiers are known except the one at the root. Experimental results show that the proposed approach has accuracies comparable to state-of-the-art hierarchical algorithms and is better than the naive baseline method described above. Moreover, the benefits of our proposal include the possibility of parallel implementations, as well as the use of all available well-known techniques to tune binary classification SVMs. 相似文献
20.
Classifier ensembles are systems composed of a set of individual classifiers structured in a parallel way and a combination module, which is responsible for providing the final output of the system. In the design of these systems, diversity is considered as one of the main aspects to be taken into account, since there is no gain in combining identical classification methods. One way of increasing diversity is to provide different datasets (patterns and/or attributes) for the individual classifiers. In this context, it is envisaged to use, for instance, feature selection methods in order to select subsets of attributes for the individual classifiers. In this paper, it is investigated the ReinSel method, which is a class-based feature selection method for ensemble systems. This method is inserted into the filter approach of feature selection methods and it chooses only the attributes that are important only for a specific class through the use of a reinforcement procedure. 相似文献
|