首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Traditional absorption refrigeration such as \(\hbox {H}_{2}\hbox {O}\)–LiBr- and \(\hbox {NH}_{3}\)\(\hbox {H}_{2}\hbox {O}\)-based refrigeration has limited applications because of several issues, including crystallization, corrosion, and large volume. \(\hbox {CO}_{2}\)–ionic liquids (ILs) as new absorption working pairs were investigated in this study. The objective was to use the group contribution equation of state (GC-EOS) method to predict the solubilities of binary systems containing high-pressure \(\hbox {CO}_{2}\)–imidazole bis(trifluoromethanesulfonimide) ILs and to investigate the applicability and accuracy of the GC-EOS model. The results showed that at pressures up to 11.0 MPa and temperatures of 273 K to 400 K, the \(\hbox {CO}_{2}\) solubility in the ILs increased with increasing system pressure but decreased with increasing temperature, and its variation rate was lower at higher pressures or temperatures. Also, \(\hbox {CO}_{2}\) solubility increased in the order of [emim][\(\hbox {Tf}_{2}\hbox {N}\)] < [bmim][\(\hbox {Tf}_{2}\hbox {N}\)] < [hmim][\(\hbox {Tf}_{2}\hbox {N}\)] < [omim][\(\hbox {Tf}_{2}\hbox {N}\)], indicating that longer alkyl chains of identical IL families resulted in higher \(\hbox {CO}_{2 }\) solubility. The model prediction of \(\hbox {CO}_{2}\) solubility in the four different ILs showed reasonable consistency with the corresponding experimental results from the literature; the largest deviation was 5.7 % for \(\hbox {CO}_{2}\)-[emim][\(\hbox {Tf}_{2}\hbox {N}\)]. Therefore, it can be concluded that the GC-EOS model is a promising theoretical solution that can be used to search for suitable \(\hbox {CO}_{2}\)–IL working pairs for absorption refrigeration systems.  相似文献   

2.
Emission of gas and \(\hbox {Al}_{2}\hbox {O}_{3}\) smoke within the deflagration of \(\hbox {H}_{2}{-}\hbox {O}_{2}\)–{\(\hbox {N}_{2}{-}\hbox {CO}_{2}\)}–Al particles has been studied in a closed combustion chamber at pressures of up to 18 bar and at gas temperatures of up to 3700 K. Measurements of radiance intensity were taken using a five wavelength pyrometer (0.660 \(\upmu \hbox {m}\), 0.850 \(\upmu \hbox {m}\), 1.083 \(\upmu \hbox {m}\), 1.260 \(\upmu \hbox {m}\), 1.481 \(\upmu \hbox {m}\)) and a grating spectrometer in the range (4.10 \(\upmu \hbox {m}\) to 4.30 \(\upmu \hbox {m}\)). In order to characterize the aluminum oxide smoke size and temperature, an inversion method has been developed based on the radiation transfer equation and using pyrometer measurements and thermochemical calculations of \(\hbox {Al}_{2}\hbox {O}_{3}\) smoke volume fractions. Temperatures in combustion gas have been determined using a method based on the assumed blackbody head of the 4.26 \(\upmu \hbox {m}\) \(\hbox {CO}_{2}\) emission line and on its spectral shift with pressure and temperature. For validation purpose, this method has been applied to measurements obtained when calibrated alumina particles are injected in a combustion chamber prior to gaseous deflagrations. This mathematical inversion method was developed to investigate explosive fireballs.  相似文献   

3.
Solid-state dye-sensitized solar cells have been fabricated with mesoporous \(\hbox {TiO}_{2 }\) photoanode and N719 dye as photosensitizer. First, \(\hbox {TiO}_{2}\) and non-doped, Zn- and Mg-doped CuCrO\(_{2}\) nanoparticles have been synthesized by sol–gel method. In addition, the \(\hbox {TiO}_{2}\) pastes have been prepared through Pechini-type sol–gel method. The effect of \(\hbox {TiO}_{2}\) particle size, mesoporous \(\hbox {TiO}_{2}\) photoanode thickness and solid-state electrolyte thickness on the efficiency of the fabricated devices has been investigated. Our results show that in spite of the low amount of dye loading for photoanode with large \(\hbox {TiO}_{2}\) nanoparticles (80–180 nm), the dye-sensitized solar cell made from it has higher efficiency than that constructed from the photoanode comprising of small particles about 10–15 nm in size. The higher efficiency is attributed to the longer diffusion length of electrons because of a better electron transport and penetration of a large amount of \(\hbox {CuCrO}_{2 }\) nanoparticles in the porous structure of \(\hbox {TiO}_{2}\) photoanode. By using the doped \(\hbox {CuCrO}_{2}\) nanoparticles, the efficiency has been increased from 0.027% for \(\hbox {TiO}_{2}\)/N719 dye/CuCrO\(_{2}\) to 0.033% for \(\hbox {TiO}_{2}\)/N719 dye/CuCrO\(_{2}\):Zn and further increased to 0.042% for \(\hbox {TiO}_{2}\)/N719 dye/CuCrO\(_{2}\):Mg. The efficiency enhancement by doping is ascribed to the conductivity improvement due to the presence of impurity atoms.  相似文献   

4.
A theoretical study of NO adsorption on \(\hbox {Cu}_{m}\hbox {Co}_{n}\) (2 \(\le m+n \le \) 7) clusters was carried out using a density functional method. Generally, NO is absorbed at the top site via the N atom, except in \(\hbox {Cu}_{3}\hbox {NO}\) and \(\hbox {Cu}_{5}\hbox {NO}\) clusters, where NO is located at the bridge site. \(\hbox {Co}_{2}\hbox {NO}\), \(\hbox {Co}_{3}\hbox {NO}\), \(\hbox {Cu}_{2}\hbox {Co}_{2}\hbox {NO}\), \(\hbox {Co}_{5}\hbox {NO}\), \(\hbox {Cu}_{2}\hbox {Co}_{4}\hbox {NO}\) and \(\hbox {Cu}_{6}\hbox {CoNO}\) clusters have larger adsorption energies, indicating that NO of these clusters are more easily adsorbed. After adsorption, N–O bond is weakened and the activity is enhanced as a result of vibration frequency of N–O bond getting lower than that of a single NO molecule. \(\hbox {Cu}_{2}\hbox {CoNO}\), \(\hbox {Cu}_{3}\hbox {CoNO}\), \(\hbox {Cu}_{2}\hbox {Co}_{2}\hbox {NO}\), \(\hbox {Cu}_{3}\hbox {Co}_{3}\hbox {NO}\) and \(\hbox {Cu}\hbox {Co}_{5}\hbox {NO}\) clusters are more stable than their neighbours, while CuCoNO, \(\hbox {Co}_{3}\hbox {NO}\), \(\hbox {Cu}_{3}\hbox {CoNO}\), \(\hbox {Cu}_{2}\hbox {Co}_{3}\hbox {NO}\), \(\hbox {Cu}_{3}\hbox {Co}_{3}\hbox {NO}\) and \(\hbox {Cu}_{6}\)CoNO clusters display stronger chemical stability. Magnetic and electronic properties are also discussed. The magnetic moment is affected by charge transfer and the spd hybridization.  相似文献   

5.
A novel, highly visible light active N-doped \(\hbox {WO}_{3}\) (\(\hbox {N}\)-\(\hbox {WO}_{3})\) is successfully synthesized via thermal decomposition of peroxotungstic acid–urea complex. The photocatalytic activity of \(\hbox {N}\)-\(\hbox {WO}_{3}\) is evaluated for the degradation of amaranth (AM) dye under visible and UVA light along with the role of reactive species, which has not yet been studied for \(\hbox {N}\)-\(\hbox {WO}_{3}\) photocatalysts. Doping of N into substitutional and interstitial sites of \(\hbox {WO}_{3}\) is confirmed by X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy. At a pH of 7, 1 g \(\hbox {l}^{-1}\) of \(\hbox {N}\)-\(\hbox {WO}_{3}\) can completely degrade \(10\,\hbox {mg } \hbox {l}^{-1}\) of AM within 1 h under visible and UVA light. For the degradation of AM by \(\hbox {N}\)-\(\hbox {WO}_{3}\) under visible and UVA light, \(\hbox {h}^{+}\) is found to be the main reactive species, while \(\cdot \hbox {OH}\) contributes to a lesser extent. On the contrary, \(^{1}\hbox {O}_{2}, \cdot \hbox {O}_{2}^{-}\) and \(\hbox {e}^{-}\) show negligible roles. The crucial role of \(\hbox {h}^{+}\) indicates effective suppression of electron–hole recombination after N doping. Dye sensitization and oxidation by reactive species are found to be the major pathway for the degradation of AM under visible and UVA light, respectively.  相似文献   

6.
The present work deals with the development of a new ternary composite, \(\hbox {Ag}_{2}\hbox {Se}\)\(\hbox {G}\)\(\hbox {TiO}_{2}\), using ultrasonic techniques as well as X-ray diffraction (XRD), scanning electron microscopy (SEM), high transmission electron microscopy (HTEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and UV–Vis diffuse reflectance spectra (DRS) analyses. The photocatalytic potential of nanocomposites is examined for \(\hbox {CO}_{2}\) reduction to methanol under ultraviolet (UV) and visible light irradiation. \(\hbox {Ag}_{2}\hbox {Se}\)\(\hbox {TiO}_{2}\) with an optimum loading graphene of 10 wt% exhibited the maximum photoactivity, obtaining a total \(\hbox {CH}_{3}\hbox {OH}\) yield of 3.52 \(\upmu \hbox {mol}\,\hbox {g}^{-1}\,\hbox {h}^{-1}\) after 48 h. This outstanding photoreduction activity is due to the positive synergistic relation between \(\hbox {Ag}_{2}\hbox {Se}\) and graphene components in our heterogeneous system.  相似文献   

7.
Structural, electronic, mechanical and thermodynamic properties of \(\hbox {Rh}_{3}\hbox {Zr}_{x}\hbox {V}_{1-x}\) and \(\hbox {Rh}_{3}\hbox {Hf}_{x}\hbox {V}_{1-x}\) (\(x = 0\), 0.125, 0.25, 0.75, 0.875 and 1) combinations are investigated by means of first-principles calculations based on the density functional theory within the generalized gradient approximation. Here, \(\hbox {Rh}_{3}\hbox {V}\) is chosen as the parent binary compound and the doping elements are zirconium and hafnium with the above-mentioned concentrations. The calculated lattice parameters and elastic modulus of binary \(\hbox {Rh}_{3}\hbox {Hf}\), \(\hbox {Rh}_{3}\hbox {V}\) and \(\hbox {Rh}_{3}\hbox {Zr}\) are in good agreement with the available experimental and other theoretical results. In this study, the following ternary materials viz., \(\hbox {Rh}_{3}\hbox {Zr}_{0.75}\hbox {V}_{0.25}\), \(\hbox {Rh}_{3}\hbox {Hf}_{0.25}\hbox {V}_{0.75}\) and \(\hbox {Rh}_{3}\hbox {Hf}_{0.75}\hbox {V}_{0.25}\) are found to be brittle/more brittle than the parent binary compound \(\hbox {Rh}_{3}\hbox {V}\), whereas the other ternary combinations, namely \(\hbox {Rh}_{3}\hbox {Zr}_{0.125}\hbox {V}_{0.875}\), \(\hbox {Rh}_{3}\hbox {Zr}_{0.25}\hbox {V}_{0.75}\), \(\hbox {Rh}_{3}\hbox {Zr}_{0.875}\hbox {V}_{0.125}\), \(\hbox {Rh}_{3}\hbox {Hf}_{0.125}\hbox {V}_{0.875}\) and \(\hbox {Rh}_{3}\hbox {Hf}_{0.875}\hbox {V}_{0.125}\) are found to be more ductile than \(\hbox {Rh}_{3}\hbox {V}\). The more brittle ternary combination, namely \(\hbox {Rh}_{3}\hbox {Hf}_{0.75}\hbox {V}_{0.25}\) (\(B = 229.32\,\hbox {GPa}\)) has the maximum Young’s modulus, shear modulus and hardness values; whereas the more ductile ternary \(\hbox {Rh}_{3}\hbox {Zr}_{0.25}\hbox {V}_{0.75}\) combination (\(B = 243.54\,\hbox {GPa}\)) is found to have the least values of Young’s modulus, shear modulus and hardness. The band structure, density of states histograms and charge density plots are drawn and discussed. Computed Debye temperature (\(\theta _{\mathrm{D}}\)), Grüneisen parameter (\(\zeta \)) and melting temperature (\(T_{\mathrm{m}})\) of the parent binary compound \(\hbox {Rh}_{3}\hbox {V}\), the more brittle \(\hbox {Rh}_{3}\hbox {Hf}_{0.75}\hbox {V}_{0.25}\) combination and the more ductile \(\hbox {Rh}_{3}\hbox {Zr}_{0.25}\hbox {V}_{0.75}\) combination are given by (895 K, 1.3491, 2788 K), (790 K, 1.2701, 2736 K) and (698 K, 1.7972, 2529 K), respectively.  相似文献   

8.
The present paper reports the effect of B- and BN-doped \(\hbox {C}_{60}\) as catalysts for lowering the dehydrogenation energy in \(\hbox {MXH}_{4}\) clusters (M = Na and Li, X = Al and B) using density functional calculations. \(\hbox {MXH}_{4}\) interacts strongly with B-doped \(\hbox {C}_{60}\) and weakly with BN-doped \(\hbox {C}_{60}\) in comparison with pure \(\hbox {C}_{60}\) with binding energy 0.56–0.80 and 0.05–0.34 eV, respectively. The hydrogen release energy \((E_{\mathrm{HRE}})\) of \(\hbox {MXH}_{4}\) decreases sharply in the range of 38–49% when adsorbed on B-doped \(\hbox {C}_{60}\); however, with BN-doped \(\hbox {C}_{60}\) the decrease in the \(E_{\mathrm{HRE}}\) varies in the range of 6–20% as compared with pure \(\hbox {MXH}_{4}\) clusters. The hydrogen release energy of second hydrogen atom in \(\hbox {MXH}_{4}\) decreases sharply in the range of 1.7–41% for BN-doped \(\hbox {C}_{60}\) and decreases in the range of 0.2–11.3% for B-doped \(\hbox {C}_{60}\) as compared with pure \(\hbox {MXH}_{4}\) clusters. The results can be explained on the basis of charge transfer within \(\hbox {MXH}_{4}\) cluster and with the doped \(\hbox {C}_{60}\).  相似文献   

9.
In-situ-grown \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\)-reinforced \(\hbox {SiO}_{2}\textendash \hbox {Al}_{2}\hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}\) \((\hbox {La}_{2}\hbox {O}_{3})\) self-reinforced glass–ceramic composites were obtained without any \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\) seed crystal. These composites with different compositions were prepared in a nitrogen atmosphere for comparison of phase transformation and mechanical properties. The results showed that \(\hbox {SiO}_{2}\textendash \hbox {Al}_{2}\hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}\) \((\hbox {La}_{2}\hbox {O}_{3})\) glass can effectively promote \(\upalpha \)- to \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\) phase transformation. The crystallized \(\hbox {Y}_{2}\hbox {Si}_{2}\hbox {O}_{7}\textendash \hbox {La}_{4.67}\hbox {Si}_{3}\hbox {O}_{13}\) phases with a high melting point significantly benefited the high-temperature mechanical properties of the composites. The \(\hbox {Si}_{3}\hbox {N}_{4}\textendash \hbox {SiO}_{2}\textendash \hbox {Al}_{2} \hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}\) \((\hbox {La}_{2}\hbox {O}_{3})\) glass–ceramic composites exhibit excellent mechanical properties compared with unreinforced glass–ceramic matrix, which is undoubtedly attributed to the elongated \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\) grains. These glass–ceramic \(\hbox {Si}_{3}\hbox {N}_{4}\) composites with excellent comprehensive properties might be a promising material for high-temperature applications.  相似文献   

10.
For the design and operation of \(\hbox {CO}_{2}\) capture and storage (CCS) processes, equation of state (EoS) models are used for phase equilibrium calculations. Reliability of an EoS model plays a crucial role, and many variations of EoS models have been reported and continue to be published. The prediction of phase equilibria for \(\hbox {CO}_{2}\) mixtures containing \(\hbox {SO}_{2}\), \(\hbox {N}_{2}\), NO, \(\hbox {H}_{2}\), \(\hbox {O}_{2}\), \(\hbox {CH}_{4}\), \(\hbox {H}_{2}\mathrm{S}\), Ar, and \(\hbox {H}_{2}\mathrm{O}\) is important for \(\hbox {CO}_{2}\) transportation because the captured gas normally contains small amounts of impurities even though it is purified in advance. For the design of pipelines in deep sea or arctic conditions, flow assurance and safety are considered priority issues, and highly reliable calculations are required. In this work, predictive Soave–Redlich–Kwong, cubic plus association, Groupe Européen de Recherches Gazières (GERG-2008), perturbed-chain statistical associating fluid theory, and non-random lattice fluids hydrogen bond EoS models were compared regarding performance in calculating phase equilibria of \(\hbox {CO}_{2}\)-impurity binary mixtures and with the collected literature data. No single EoS could cover the entire range of systems considered in this study. Weaknesses and strong points of each EoS model were analyzed, and recommendations are given as guidelines for safe design and operation of CCS processes.  相似文献   

11.
\(\hbox {V}_{2}\hbox {O}_{5}\) nanomaterials with rough surface were synthesized using commercial \(\hbox {V}_{2}\hbox {O}_{5}\), ethanol (EtOH) and \(\hbox {H}_{2}\hbox {O}\) as the starting materials by a simple hydrothermal route and combination of calcination. The electrochemical properties of \(\hbox {V}_{2}\hbox {O}_{5}\) nanomaterials as electrodes in a supercapacitor device were measured using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) method. \(\hbox {V}_{2}\hbox {O}_{5}\) nanomaterials exhibit the specific capacitance of 423 F \(\hbox {g}^{-1}\) at the current density of 0.5 A \(\hbox {g}^{-1}\) and retain 327 F \(\hbox {g}^{-1}\) even at the high current density of 10 A \(\hbox {g}^{-1}\). The influence of the ratio of \(\hbox {EtOH/H}_{2}\hbox {O}\), the calcined time and temperature on the morphology, purity and electrochemical property of the products is discussed in detail. The results revealed that the ratio of \(\hbox {EtOH}\hbox {/}\hbox {H}_{2}\hbox {O}= 10\hbox {/}25\) and calcination at \(400{^{\circ }}\hbox {C}\) for 2–4 h are favourable for preparing \(\hbox {V}_{2}\hbox {O}_{5}\) nanomaterials and they exhibited the best electrochemical property. The novel morphology and high specific surface area are the main factors that contribute to high electrochemical performance of \(\hbox {V}_{2}\hbox {O}_{5}\) nanomaterials during the charge–discharge processes. It turns out that \(\hbox {V}_{2}\hbox {O}_{5}\) nanomaterials with rough surface is an ideal material for supercapacitor electrode in the present work.  相似文献   

12.
We report the effects of annealing in conjunction with \(\hbox {CdCl}_{2}\) treatment on the photovoltaic properties of \(\hbox {CdTe/Zn}_{0.1}\hbox {Cd}_{0.9}\)S thin film solar cells. CdTe layer is subjected to dry \(\hbox {CdCl}_{2}\) treatment by thermal evaporation method and subsequently, heat treated in air using a tube furnace from 400 to \(500{^{\circ }}\hbox {C}\). AFM and XRD results show improved grain size and crystallographic properties of the CdTe film with dry \(\hbox {CdCl}_{2}\) treatment. This recrystallization and grain growth of the CdTe layer upon \(\hbox {CdCl}_{2}\) treatment translates into improved photo-conversion efficiencies of \(\hbox {CdTe/Zn}_{0.1}\hbox {Cd}_{0.9}\)S cell. The results of dry \(\hbox {CdCl}_{2}\) treatment were compared with conventional wet \(\hbox {CdCl}_{2}\) treatment. Photo-conversion efficiency of 5.2% is achieved for dry \(\hbox {CdCl}_{2}\)-treated cells in comparison with 2.4% of wet-treated cell at heat treatment temperature of \(425{^{\circ }}\hbox {C}\).  相似文献   

13.
\(\hbox {SrTiO}_{3}\) and Bi-doped \(\hbox {SrTiO}_{3}\) films were fabricated with different device structures using the sol–gel method for non-volatile memory applications, and their resistance-switching behaviour, endurance and retention characteristics were investigated. \(\hbox {SrTiO}_{3}\) and \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si or Pt have the same phase structure, morphologies and grain size; however, the grain size of the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si is slightly larger than those of the \(\hbox {SrTiO}_{3}\) films grown on Si and the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Pt. The \(\hbox {SrTiO}_{3}\) or \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si or Pt all exhibit bipolar resistive-switching behaviour and follow the same conductive mechanism; however, the \(\hbox {Ag}/\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}/\hbox {Si}\) device possesses the highest \(R_{\mathrm{HRS}}{/}R_{\mathrm{LRS}}\) of \(10^{5}\) and the best endurance and retention characteristics. The doping of Bi is conducive to enhance the \(R_{\mathrm{HRS}}{/}R_{\mathrm{LRS}}\) of the \(\hbox {SrTiO}_{3}\) films; meanwhile, the Si substrates help improve the endurance and retention characteristics of the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films.  相似文献   

14.
Thin films of optimally doped(001)-oriented \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) are epitaxially integrated on silicon(001) through growth on a single crystalline \(\hbox {SrTiO}_{3}\) buffer. The former is grown using pulsed-laser deposition and the latter is grown on Si using oxide molecular beam epitaxy. The single crystal nature of the \(\hbox {SrTiO}_{3}\) buffer enables high quality \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) films exhibiting high transition temperatures to be integrated on Si. For a 30-nm thick \(\hbox {SrTiO}_{3}\) buffer, 50-nm thick \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) films that exhibit a transition temperature of \(\sim \)93 K, and a narrow transition width (<5 K) are achieved. The integration of single crystalline \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) on Si(001) paves the way for the potential exploration of cuprate materials in a variety of applications.  相似文献   

15.
Undoped and Eu-doped \(\hbox {CaSnO}_{3}\) nanopowders were prepared by a facile sol–gel auto-combustion method calcined at \(800{^{\circ }}\hbox {C}\) for 1 h. The samples are found to be well-crystallized pure orthorhombic \(\hbox {CaSnO}_{3}\) structure. Photoluminescence (PL) measurements indicated that the undoped sample exhibits a broad blue emission at about 420–440 nm, which can be recognized from an intrinsic centre or centres in \(\hbox {CaSnO}_{3}\). Eu-doped \(\hbox {CaSnO}_{3}\) showed broad blue emission centred about 434 nm, a weak peak at 465 nm and a sharp intense yellow emission line at 592 nm. The emission situated at 592 nm was assigned to the f–f transition of \(^{5}\hbox {D}_{0}\rightarrow ^{7}\hbox {F}_{1}\) in \(\hbox {Eu}^{3+}\) ions. The afterglow emission and PL decay results in Eu-doped \(\hbox {CaSnO}_{3}\) phosphor, which revealed that there are at least two different traps in this phosphor. From the obtained results, \(\hbox {Eu}^{3+}\)-doped \(\hbox {CaSnO}_{3}\) phosphor could be proposed as a potential white luminescent optical material.  相似文献   

16.
Heterostructure \(\hbox {Ba}_{0.7}\hbox {Sr}_{0.3}\hbox {TiO}_{3}\)\(\hbox {Ni}_{0.8}\hbox {Zn}_{0.2}\hbox {Fe}_{2}\hbox {O}_{4}\) composite thin films grown on Pt–\(\hbox {TiO}_{2}\)\(\hbox {SiO}_{2}\)\(\hbox {Si}\) substrate were prepared by chemical solution process, where \(\hbox {Ba}_{0.7}\hbox {Sr}_{0.3}\hbox {TiO}_{3}\) layer grew as top/bottom while \(\hbox {Ni}_{0.8}\hbox {Zn}_{0.2}\hbox {Fe}_{2}\hbox {O}_{4}\) layer grew as bottom/top. Structural characterization by X-ray diffraction and atomic force microscopy showed the similar crystal structure, different lattice parameters, large lattice strain and small grain size in heterostructures, whatever their deposition sequences. Such heterostructures present simultaneously ferromagnetic and ferroelectric responses at room temperature. In particular, an exceptionally large saturation magnetization was observed in one heterostructures film. The growth sequences of \(\hbox {Ba}_{0.7}\hbox {Sr}_{0.3}\hbox {TiO}_{3}\) and \(\hbox {Ni}_{0.8}\hbox {Zn}_{0.2}\hbox {Fe}_{2}\hbox {O}_{4}\) layers on the substrate remarkably affect the magnetic properties of the composite thin films at room temperature.  相似文献   

17.
In Part I of this study (Cheng et al. in Int J Thermophys 37: 62, 2016), the reflectance and transmittance of dense ceramic plates were measured at wavelengths from 0.4 \(\upmu \hbox {m}\) to about 20 \(\upmu \hbox {m}\). The samples of \(\hbox {Al}_{2}\hbox {O}_{3}\) and AlN are semitransparent in the wavelength region from 0.4 \(\upmu \hbox {m}\) to about 7 \(\upmu \hbox {m}\), where volume scattering dominates the absorption and scattering behaviors. On the other hand, the \(\hbox {Si}_{3}\hbox {N}_{4}\) plate is opaque in the whole wavelength region. In the mid-infrared region, all samples show phonon vibration bands and surface reflection appears to be strong. The present study focuses on modeling the radiative properties and uses an inverse method to obtain the scattering and absorption coefficients of \(\hbox {Al}_{2}\hbox {O}_{3}\) and AlN in the semitransparent region from the measured directional-hemispherical reflectance and transmittance. The scattering coefficient is also predicted using Mie theory for comparison. The Lorentz oscillator model is applied to fit the reflectance spectra of AlN and \(\hbox {Si}_{3}\hbox {N}_{4}\) from 1.6 \(\upmu \hbox {m}\) to 20 \(\upmu \hbox {m}\) in order to obtain their optical constants. It is found that the phonon modes for \(\hbox {Si}_{3}\hbox {N}_{4}\) are much stronger in the polycrystalline sample studied here than in amorphous films reported previously.  相似文献   

18.
NiWP alloy coatings were prepared by electrodeposition, and the effects of ferrous chloride (\(\hbox {FeCl}_{2})\), sodium tungstate (\(\hbox {Na}_{2}\hbox {WO}_{4})\) and current density (\(D_{\mathrm{K}}\)) on the properties of the coatings were studied. The results show that upon increasing the concentration of \(\hbox {FeCl}_{2}\), initially the Fe content of the coating increased and then tended to be stable; the deposition rate and microhardness of coating decreased when the cathodic current efficiency (\(\eta \)) initially increased and then decreased; and for a \(\hbox {FeCl}_{2}\) concentration of \(3.6\, \hbox {g\,l}^{-1}\), the cathodic current efficiency reached its maximum of 74.23%. Upon increasing the concentration of \(\hbox {Na}_{2}\hbox {WO}_{4}\), the W content and microhardness of the coatings increased; the deposition rate and the cathode current efficiency initially increased and then decreased. The cathodic current efficiency reached the maximum value of 70.33% with a \(\hbox {Na}_{2}\hbox {WO}_{4}\) concentration of 50 g \(\hbox {l}^{-1}\), whereas the deposition rate is maximum at 8.67 \(\upmu \hbox {m}\,\hbox {h}^{-1}\) with a \(\hbox {Na}_{2}\hbox {WO}_{4}\) concentration of \(40\, \hbox {g\,l}^{-1}\). Upon increasing the \(D_{\mathrm{K}}\), the deposition rate, microhardness, Fe and W content of the coatings increased, the cathodic current efficiency increases first increased and then decreased. When \(D_{\mathrm{K}}\) was 4 A dm\(^{-2}\), the current efficiency reached the maximum of 73.64%.  相似文献   

19.
A quaternary glass system \(\hbox {Na}_{1.4}\hbox {B}_{2.8}\hbox {Si}_{x}\hbox {Pb}_{0.3-x}\hbox {O}_{5.2+x}\), with 0 \(\le \) x \(\le \) 0.3, was prepared and studied by Fourier transform infrared spectroscopy, density and ultrasonic techniques to debate the issue of the role of \(\hbox {SiO}_{2}\) in the structure of lead alkali borate glasses. The results indicate that \(\hbox {SiO}_{2}\) generates an abundance of bridging oxygen atoms, [\(\hbox {BO}_{4}\)] and [\(\hbox {SiO}_{4}\)] structural units and changes the bonds B–O–B and Pb–O–B to Si–O–Si and B–O–Si. The latter bonds have higher bond strength and higher average force constant than the former bonds. Therefore, the glass structure becomes contracted and compacted, which decreases its molar volume and increases its rigidity. This concept was asserted from the increase in the ultrasonic velocity, Debye temperature and elastic moduli with the increase of \(\hbox {SiO}_{2}\) content. The present compositional dependence of the elastic moduli was interpreted in terms of the electron–phonon anharmonic interactions and the polarization of \(\hbox {Si}^{4+}\) cation. A good correlation was observed between the experimentally determined elastic moduli and those computed according to the Makishima–Mackenzie model.  相似文献   

20.
In nuclear reactors, the performance of uranium dioxide \((\hbox {UO}_{2})\) fuel is strongly dependent on the thermal conductivity, which directly affects the fuel pellet temperature, the fission gas release and the fuel rod mechanical behavior during reactor operation. The use of additives to improve \(\hbox {UO}_{2}\) fuel performance has been investigated, and beryllium oxide (BeO) appears as a suitable additive because of its high thermal conductivity and excellent chemical compatibility with \(\hbox {UO}_{2}\). In this paper, \(\hbox {UO}_{2}\)–BeO pellets were manufactured by mechanical mixing, pressing and sintering processes varying the BeO contents and compaction pressures. Pellets with BeO contents of 2 wt%, 3 wt%, 5 wt% and 7 wt% BeO were pressed at 400 MPa, 500 MPa and 600 MPa. The laser flash method was applied to determine the thermal diffusivity, and the results showed that the thermal diffusivity tends to increase with BeO content. Comparing thermal diffusivity results of \(\hbox {UO}_{2}\) with \(\hbox {UO}_{2}\)–BeO pellets, it was observed that there was an increase in thermal diffusivity of at least 18 % for the \(\hbox {UO}_{2}\)-2 wt% BeO pellet pressed at 400 MPa. The maximum relative expanded uncertainty (coverage factor k = 2) of the thermal diffusivity measurements was estimated to be 9 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号