首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
为了研究持续高温环境对车用新材料粘接结构力学性能的影响,加工了铝合金-铝合金(Al-Al)和玄武岩纤维增强树脂复合材料-铝合金(BFRP-Al)单搭接接头,在高温(80℃)环境下进行了0天(未老化)、5天、10天、15天的老化实验,并对胶粘剂和BFRP复合材料进行了DSC和FTIR测试,分析高温老化后胶粘剂、BFRP复合材料的玻璃化转变温度(Tg)和化学成分变化,通过准静态拉伸测试获得老化后接头的失效载荷,并对其失效模式进行分析。研究结果表明:高温环境下,胶粘剂会发生后固化及氧化反应,BFRP复合材料发生热分解及氧化反应;Al-Al接头的失效载荷随老化周期的增加而不断增大,老化前后的失效模式均为内聚失效,其性能变化主要由胶粘剂决定;BFRP-Al接头的失效载荷先增加后减小,不同老化周期的接头均发生内聚和撕裂的混合失效,其性能变化由胶粘剂和BFRP复合材料共同作用决定,且随着老化周期的增加,BFRP复合材料撕裂面积不断增大,BFRP-Al接头的失效模式越来越倾向于玄武岩纤维/树脂界面的破坏,BFRP复合材料老化对接头失效载荷的影响越来越显著。   相似文献   

2.
In this paper, the effect of silica nanoparticles (nano-silica) on the bonding strength of reinforced adhesive joints was experimentally studied in five concentrations. A two-part epoxy-based adhesive (Araldite 2015) was used to bond the adherends as well as silica nanoparticles for strengthening purposes. Nano-silica was added into the adhesive by 1, 1.5, 2, 2.5 and 3 wt.%. Some adhesive joints with and without nanoparticles were tested under uniaxial loading to obtain their bonding strength. The results showed that the change in the bonding strength is a function of nanoparticles concentration. Furthermore, it was concluded that the addition of silica nanoparticles has a suitable effect on the joint strength at an optimum point, in which the joint strength takes its maximum value, and a further increase in the nanoparticles weight fraction causes the joint strength to decrease.  相似文献   

3.
Fatigue tests and analytical investigation of adhesive bonded shaft joints were conducted to propose the estimation method of fatigue strength. Two kinds of adhesive bonded joints were studied: one, shaft joints connected with adhesive coupling, the other, adhesive joints of thin wall tubes to obtain standard fatigue strength. Both pulsating tensile and torsional fatigue tests were conducted with each adhesive joint. Furthermore, the stress distributions under tensile and torsional load conditions were analyzed by finite element method. Based on the analytically computed maximum normal shear stress in the adhesive layer, fatigue strength of the shaft joints was tandardized and compared with that of adhesive joints of thin wall tubes. As a result, it is confirmed that the maximum normal and shear stresses are key parameters for estimating fatigue strength under pulsating tensile and forsional load conditions, respectively. Furthermore, this study indicates an improved method of estimating fatigue strength by using tapered coupling order to reduce the stress concentration at the end of the adhesive layer.  相似文献   

4.
The composite joint has become an important research area because the structural efficiency of a structure with a joint is determined by its joints rather than by its basic structure since the joints are often the weakest areas in composite structures. In this paper, the strengths of adhesive joints consisting of metal and composites were predicted and tested by the modified damage zone theory. Nonlinear finite element analyses of adhesive joints considering the material nonlinearity of the adhesive layer were performed. From the tests and analyses, the strengths of the adhesive joints could be predicted to within 20.1% using the modified damage zone theory.  相似文献   

5.
This work is focused on investigating the influence of morphologies and composition of polymer coating layers on the dispersion stability of the hybrid particles dispersed in non-aqueous solvent for use in electrophoretic displays. Black copper chromite/polymer core-shell nanoparticles are synthesized through radical grafting polymerization. A series of methylacrylate monomers containing a plurality of alkyl side chains with different length, methyl methacrylate (MMA), tert-butylmethacrylate (TBMA), 2-ethylhexyl methacrylate (EHMA) and lauryl methacrylate (LMA), are employed for polymer encapsulation. The morphologies and composition of Black 1G/polymer core-shell nanoparticles are characterized by a combination of TEM and FTIR measurements. The UV–vis transmittance results demonstrate that the longer or more branching the monomers used in polymer modification, the more stable the particle suspension. For homopolymer encapsulation, monomer with an alkyl chain containing more than about four carbon atoms will impart good dispersibility to particles. Moreover, incorporation of a second monomer into polymer backbone can adjust the dispersion stability of particle suspension. When 15 mol% of MMA or 5 mol% of TBMA is added into PLMA backbone, the particles will gain better dispersibility than particles coated with 100 mol% LMA. If EHMA acts as main monomer, addition of a second monomer will decrease the dispersibility instead. These findings may be a guideline to tune electrophoretic medium stability and improve life of EPDs. Within this study, A dual-particle electrophoretic dispersion of P (4-VP-co-LMA) anchored Black 1G particles and white TiO2 was prepared to show black/white image under a bias voltage of 5 V.  相似文献   

6.
This paper presents a methodology to predict the strength of adhesive joints under variable moisture conditions. The moisture uptake in adhesive joints was determined using a history dependent moisture prediction methodology where diffusion coefficients were based on experimental cyclic moisture uptake of bulk adhesive samples. The predicted moisture concentrations and moisture diffusion history were used in a structural analysis with a cohesive zone model to predict damage and failure of the joints. A moisture concentration and moisture history dependent bilinear cohesive zone law was used. The methodology was used to determine the damage and failure in aluminium alloy – epoxy adhesive single lap joints, conditioned at 50 °C and good predictions of failure load were observed. The damage in the adhesive joints decreased the load carrying capacity before reaching the failure load and a nonlinear relationship between the load and displacement was observed. Changes in crack initiation and crack propagation were also observed between different types of joints. The presented methodology is generic and may be applied to different types of adhesive joint and adhesive.  相似文献   

7.
Antibacterial activity has become a significant property of textiles used in applications such as medicine, clothing, and household products. In this study, we compounded polypropylene with either micro- or nano-sized silver powders. These polypropylene/silver compounds were prepared by direct melt-compounding using a conventional twin-screw mixer. We analyzed the characteristics of the compounds using wide-angle X-ray diffractometry (WAXS), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The DSC and WAXS results indicated that the crystallinity of the polypropylene component decreased slightly when compared with that of the pure polymer. The SEM micrographs indicated that the silver particles had good dispersibility in the matrix. We measured the mechanical properties of these materials using a universal tensile tester and evaluated the antibacterial activities of these compounds by performing quantitative antibacterial tests using the AATCC-100 test method. From these evaluations of antibacterial activity, we conclude that the compounds incorporating the silver nanoparticles exhibited superior antibacterial activity relative to the samples containing micron-sized particles.  相似文献   

8.
In this study, the adhesive properties of the plasma modified polypropylene (PP) and polyethylene terephthalate (PET) film surfaces have been investigated. Hydrophilicity of these polymer film surfaces was studied by contact angle measurements. The surface energy of the polymer films was calculated from contact angle data using Fowkes method. The chemical composition of the polymer films was analyzed by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) was used to study the changes in surface feature of the polymer surfaces due to plasma treatment. The adhesion strength of the plasma modified film was studied by T-peel strength test. The results showed a considerable improvement in surface wettability even for short exposure times. The AFM and XPS analyses showed changes in surface topography and formation of polar groups on the plasma modified PP and PET surfaces. These changes enhanced the adhesive properties of polymer film surfaces.  相似文献   

9.
目的 探究超声处理对氨基化多壁碳纳米管(MWCNTs–NH2)改性环氧黏接接头黏接性能和热稳定性的影响,为强化MWCNTs–NH2改性环氧胶黏剂与铝合金的黏接提供参考。方法 通过机械搅拌与声波破碎的方法将质量分数为0.75%的MWCNTs–NH2添加到环氧胶黏剂基体中,使用MWCNTs–NH2改性环氧胶黏剂制备铝合金黏接接头,基于超声辅助黏接工艺在铝合金黏接过程中进行超声处理。通过傅里叶变换红外光谱仪(FTIR)分析MWCNTs–NH2改性环氧胶黏剂基体官能团的变化情况。采用单搭接剪切强度试验测定黏接接头的拉伸剪切强度。通过扫描电子显微镜(Scanning Electron Microscope,SEM)观察黏接接头拉伸失效断面以及铝合金与胶黏剂间的黏接界面。通过热失重分析仪(TGA)测试并记录胶黏剂试样质量随温度变化的曲线。结果 经超声处理后,MWCNTs–NH2与树脂基体间的化学反应增强。与纯环氧黏接接头相比,超声处理后的MWCNTs–NH2...  相似文献   

10.
High-density polyethylene (HDPE) surface was modified by radio-frequency discharge plasma and subsequently grafted by alkoxy silane to form a new surface containing polar functional groups. Reaction of the polar groups with vinyl silanes significantly improved hydrophilicity of the polymer. The decrease of surface energy of polymer modified by plasma in the course of ageing was stabilized by silane grafting. The changes in chemical structure of the polymer were analyzed by ATR-FTIR spectroscopy, surface roughness was studied using AFM. The surface energy, and its polar contribution of plasma modified HDPE increased, as well as peel strengths of adhesive joints to polyacrylate.  相似文献   

11.
Amphiphilic poly-N-vinylpyrrolidone derivatives (Amph-PVP) with different molecular weight of hydrophilic PVP fragment and one terminal hydrophobic n-alkyl fragment of different length were synthesized for preparation of nano-scaled particles in aqueous media. To estimate novel polymer efficiency and perspective as basis for drug delivery systems, the polymeric micelle-like particles were prepared by dialysis and solvent evaporation methods. Indomethacin was incorporated into hydrophobic inner core of these nanoparticles as a typical model drug. From the dynamic light-scattering measurements, the size of particles formed was less than 200 nm with narrow monodisperse size distribution and nanoparticles size slightly increased with the amount of indomethacin encapsulated into inner core of Amph-PVP particles. The critical aggregation concentration values for prepared polymer samples determined by fluorescence spectroscopy were in micromole range which is lower than it is for common low molecular weight surfactants. As the hydrophobic fragment of amphiphilic polymer increased, the critical aggregation concentration values decreased. An increase of polymer hydrophilic fragment molecular weight produced larger nanoaggregates. In vitro release experiments using indomethacin-loaded Amph-PVP nanoparticles exhibited the sustained release behavior without any burst effect for most polymer samples.  相似文献   

12.
Spherical and layered silica nanoparticles synthesized by the sol-gel method were melt blended with a polypropylene matrix in order to quantify their effect on thermal and mechanical behaviours of the resulting polymer composites. Transmission electron microscopy images showed that spherical nanoparticles were dispersed in the polymer matrix whereas layered particles display tactoid and agglomerated structures. By thermogravimetric analysis, it was observed that independent of the particle aspect ratio, the nanofillers render larger thermal degradation stabilization to the polymer matrix under oxidative conditions than under inert atmosphere. Noteworthy, the largest improvements were found by using spherical nanoparticles in presence of a compatibilizer. These results allow the conclusion that the physical/chemical adsorption of the volatile products on the particle surface during the oxidative degradation is the plausible mechanism behind the thermal stabilization. Tensile stress-strain tests otherwise showed that composites with spherical nanoparticles can display similar or even larger elastic modulus than composites with layered particles showing that the polymer/particle entanglement could be the mechanism for the load transfer in these nanocomposites.  相似文献   

13.
The effect of the bonding force during flip chip-on-flex (FCOF) assembly on the electrical performance of the nonconductive adhesive (NCA) interconnects was investigated in this study, under the precondition of a reduced processing temperature in order to minimize thermally-induced damage to the low-cost flexible substrates. Pressure cooker tests (PCT) were performed to assess the reliability performance of the adhesive joints in high temperature and high humidity conditions. The assembly process was modified and the processing temperature and the bonding force were adjusted according to the experimental results to enable the use of low cost substrates, such as poly(ethylene terephthalate) (PET) materials in smart card fabrication.  相似文献   

14.
In the last few years, the use of adhesive joints for structural applications has rapidly increased and adhesives are more often subject to fatigue loads during their in‐service life. In presence of a rapidly varying load, such as a high‐frequency vibration, adhesively bonded joints may undergo fatigue lives in the Very High Cycle Fatigue (VHCF) region that are significantly larger than those investigated in usual high‐cycle fatigue tests. The present paper proposes an innovative testing technique for performing accelerated fully reversed tension‐compression VHCF tests on adhesive butt‐joints. The procedure for the design of the adherends is described and then experimentally validated. Ultrasonic VHCF tests are finally carried out on a cyanoacrylate butt‐joint up to 109 cycles: experimental results show that the proposed testing equipment permits an effective assessment of the VHCF response of the adhesive in a limited testing time.  相似文献   

15.
ABSTRACT

Urban street dust (SD) represents a natural source of mineral floating particles (FP) in the atmosphere. The FP particles have usually a wide range of sizes. These particles were monitored and collected by automatic stations in Cluj-Napoca, Romania. The SD and FP samples were investigated by XRD and SEM-EDX analysis. The obtained results prove that both, SD and FP, have a similar composition, namely quartz, clay particles (e.g., muscovite, and kaolinite), calcite, and trace of lepidocrocite. Nanostructural features and fine micro-scaled particles are observed. Quartz and clay nanoparticles were found in SD samples as well as in FP samples. The AFM investigation reveals a nano-size range for quartz particles between 80–90 nm, and 40–60 nm diameter for clay particles. Similar values were obtained by TEM microscopy. The high resolution microscopy results were confirmed by the values obtained by Scherrer formula applied to the XRD patterns. Composition and dimensional similarities found for the nanoparticles in SD and FP samples prove that mineral nanofractions in atmosphere were induced by the urban environmental interactions with the SD. Results provide valuable information on the size, shape, and composition of nanoparticles induced in atmosphere by winds and by environmental interactions with the SD. This work contributes to the evaluation of the air pollution and simultaneously it offers a basis for an improved life quality for Cluj-Napoca population.  相似文献   

16.
EDX 是一种研究粘接接头和聚合物基复合材料表界面性能的分析测试方法。利用EDX 对粘接接头表界面主要元素变化行为进行分析研究, 表明C/ C 复合材料从常温到900 ℃, Z 向的碳元素含量始终低于X 、Y向, 这是由C/ C 复合材料的性质决定的。粘接接头的破坏形式, 是由常温的C/ C 复合材料破坏转变为200 ℃及其以上温度的胶粘剂内聚破坏的。C/ C 复合材料和胶粘剂表面碳、硅和氧元素变化表明: 当温度低于550 ℃ 时,C/ C 复合材料和胶粘剂的热分解速率相似; 当温度高于550 ℃时, 胶粘剂的热分解速率明显快于C/ C 复合材料。   相似文献   

17.
高温环境下钢-碳纤维增强聚合物复合材料(CFRP)板的胶粘界面是CFRP粘贴加固钢结构的薄弱环节。为掌握温度对钢-CFRP板胶粘界面力学性能的影响,制作了双搭接接头试件,开展了3种胶粘剂在4种温度下(25℃、55℃、70℃和90℃)的静力拉伸试验。探索了接头试件的破坏模式、荷载-位移关系、CFRP板表面应变分布、界面剪应力分布和粘结-滑移关系等。结果表明:当温度低于55℃时,试件的破坏模式与胶粘剂种类相关性更大,当温度高于70℃时,不同胶粘剂的破坏模式具有相似性,且均出现了CFRP板撕裂。温度对不同胶粘试件的承载力影响存在差异,HJY-4105高韧性环氧树脂结构胶粘剂(HJY胶)试件的承载力随温度的升高而增大,LICA-100A/B 环氧树脂结构胶粘剂(LICA胶)试件的温度稳定性较差,Sikadur-30 CN双组份环氧结构加固碳板胶(SIKA30胶)试件在55℃时承载力最高。随着温度升高,胶粘层的剪切强度、界面剪应力峰值和剪切刚度下降,胶粘剂的延性增加,峰值剪应力不影响试件的抗拉强度。温度对粘结-滑移关系的影响显著,HJY胶随着温度的升高,粘结-滑移本构的延性增加,破坏模式由脆性破坏变为延性破坏。研究表明:合理的耐高温胶应用于钢结构加固,能适应自然高温环境的不利影响。   相似文献   

18.
We describe an approach to prepare co-continuous microstructured blends of polymers and nanoparticles by formation of a percolating network of particles within one phase of a polymer mixture undergoing spinodal decomposition. Nanorods or nanospheres of CdSe were added to near-critical blends of polystyrene and poly(vinyl methyl ether) quenched to above their lower critical solution temperature. Beyond a critical loading of nanoparticles, phase separation is arrested due to the aggregation of particles into a network (or colloidal gel) within the poly(vinyl methyl ether) phase, yielding a co-continuous spinodal-like structure with a characteristic length scale of several micrometers. The critical concentration of nanorods to achieve kinetic arrest is found to be smaller than for nanospheres, which is in qualitative agreement with the expected dependence of the nanoparticle percolation threshold on aspect ratio. Compared to structural arrest by interfacial jamming, our approach avoids the necessity for neutral wetting of particles by the two phases, providing a general pathway to co-continuous micro- and nanoscopic structures.  相似文献   

19.
This work presents some results of the synthesis and structural, microstructural, and magnetic characterization of fucan coated cobalt ferrite nanoparticles prepared by using a modified coprecipitation method. Aqueous suspensions of magnetic particles were prepared by coprecipitation of Fe(III) and Co(II) in the presence of NaOH, acid oleic and fucan polymer. The samples were characterized by X-ray diffraction (XRD), electron scanning microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), accelerated surface area, and porosimetry (ASAP/BET-Brunauer-Emmet-Teller) determination and magnetization measurements. Our results reveal that both uncoated and fucan polysaccharide coated CoFe2O4 nanoparticles were successfully obtained. The nanoparticles present sizes between 7 to 20 nm and saturation magnetization of the order of 40 emu/g. The nanoparticles thus obtained are suitable for future applications as a solid support for enzymes immobilization and other biotechnology applications.  相似文献   

20.
The effects on the dielectric characteristics of aluminium-adhesive bonded joint structures with different surface treatments on exposure to moisture at elevated temperatures are reported. Analysis of the frequency domain data as a function of the exposure time allows three major ageing processes to be identified; plasticization of the adhesive, changes in the state of interfacial oxide and generation of disbonded areas. Time domain data allows identification of regions where changes in the characteristics of the bond have occurred and complements the data obtained from frequency domain data. Mechanical tests on joints aged for 733 days indicate a large decrease in the shear strength has occurred consistent with the detection of marked changes in the dielectric traces. Anodization of the substrate increases the durability of joints in comparison with etched samples. This study illustrates the potential of this method for in-situ characterization of changes occurring both within the adhesive and the adhesive substrate interface. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号