首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel vibrating finger viscometer for high-temperature measurement in liquid metals and alloys up to 1823 K was constructed. The dynamic viscosity (\(\eta \)) of the liquid fluid is measured as a product of \((\rho \cdot \eta )^{0.5}\) and the relative change of the field coil input for a constant amplitude recording at the resonant frequency of the oscillator. The viscometer was calibrated at 298 K using reference silicon oils with varying kinematic viscosities (\(\nu \)), \((0.79\hbox { to } 200)\times 10^{-6}\hbox { m}^{2}\cdot \hbox {s}^{-1}\). In the present study, the viscosity of liquid gold (\(99.99\,\%\) Au), silver (\(99.9\, \%\) Ag), and tin (\(99.9\,\%\) Sn) was measured. The viscosities expressed as an Arrhenius function of temperature are:
$$\begin{aligned} \hbox {for Au:}\quad \quad \hbox {ln }\eta= & {} -0.1990+\frac{2669}{T}\\ \hbox {for Ag:} \quad \quad \hbox {ln }\eta= & {} -0.4631+\frac{2089}{T}\\ \hbox {for Sn:} \quad \quad \hbox {ln }\eta= & {} -0.5472+\frac{671}{T} \end{aligned}$$
The viscosity values are consistent within the range of available literature data.
  相似文献   

2.
The layered Li-TM-\(\hbox {O}_{2}\) materials have been investigated extensively due to their application as cathodes in Li batteries. The electrical properties of these oxides can be tuned or controlled either by non-stoichiometry or substitution. Hence the thermo-transport properties of Zn-substituted \(\hbox {LiNi}_{1-x}\hbox {Zn}_{x}\hbox {O}_{2}\) for \(0 \le x \le 0.16\) have been investigated in the temperature range of 300–900 K for potential application as a high-temperature thermoelectric material. For \(x < 0.08\), the compounds were of single phase belonging to the space group R-3mH while for \(x > 0.08\) an additional minority phase, ZnO forms together with the main layered phase. All the compounds exhibit a semiconducting behaviour with electrical resistivity, varying in the range of  \(\sim 10^{-4}\) to \(10^{-2}\,\,\Omega \hbox {m}\) between 300 and 900 K. The electrical resistivity is found to increase with increasing Zn-substitution predominantly due to a decrease in the charge carrier hole mobility. The activation energy remains constant, \(\sim \)10  meV, with Zn-substitution. The Seebeck coefficient of the compounds is found to decrease with increasing temperature and increase with increasing Zn-substitution. The Seebeck coefficient decreases from \(\sim \)95 to \(35\ \upmu \hbox {V K}^{-1}\) and the corresponding power factor is \(\sim \)12\(\ \upmu \hbox {W m}^{-1}\ {\hbox {K}}^{-2}\) for the \(x = 0.16\) compound.  相似文献   

3.
Impurities are considered to be the most significant source of uncertainty for the realization of the International Temperature Scale of 1990 by means of metal fixed points. The determination and further reduction in this uncertainty require a traceable chemical analysis of dissolved impurities in the fixed-point metal and accurate knowledge of the specific temperature change caused by impurities (slope of the liquidus line). We determined the slope of the liquidus line for three binary systems and present results and conclusions from the chemical analysis of zinc with a nominal purity of 7N. For the Fe–Zn system, we determined a liquidus slope of (\(-0.91\pm 0.14\)) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)) from the evaluation of freezing plateaus and (\(-0.76~\pm 0.20\)) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)) from the evaluation of melting plateaus; for the Pb–Zn system, the corresponding results are (\(-0.27~\pm 0.05\)) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)) and (\(-0.26~\pm 0.05\)) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)). Although for the Sb–Zn system, we determined a liquidus slope of about \(-0.8\) mK / (\(\upmu \hbox {g}{\cdot }\hbox { g}^{-1}\)), our investigations showed that a correction of the influence of antimony is highly questionable because antimony can be found in zinc in a fully dissolved state or precipitated as an insoluble compound. Iron is the only impurity where a correction of the fixed-point temperature was possible. For the realization of the zinc fixed point at PTB, this correction is between 2 \(\upmu \)K and 16 \(\upmu \)K depending on the batch of zinc used. The influence of the sum of all impurities was estimated by means of the OME method. The resulting uncertainty contribution is between 12 \({\upmu }\hbox {K}\) and 48 \({\upmu }\hbox {K}\).  相似文献   

4.
A systematic modification of the entropy trajectory (\(S_\mathrm{m}(T)\)) is observed at very low temperature in magnetically frustrated systems as a consequence of the constraint (\(S_\mathrm{m}\ge 0\)) imposed by the Nernst postulate. The lack of magnetic order allows to explore and compare new thermodynamic properties by tracing the specific heat (\(C_\mathrm{m}\)) behavior down to the sub-Kelvin range. Some of the most relevant findings are: (i) a common \(C_\mathrm{m}/T|_{T\rightarrow 0} \approx 7\) J/mol K\(^2\) ‘plateau’ in at least five Yb-based very-heavy-fermions (VHF) compounds; (ii) quantitative and qualitative differences between VHF and standard non-Fermi-liquids; (iii) entropy bottlenecks governing the change of \(S_\mathrm{m}(T)\) trajectories in a continuous transition into alternative ground states. A comparative analysis of \(S_\mathrm{m}(T\rightarrow 0)\) dependencies is performed in compounds suitable for adiabatic demagnetization processes according to their \(\partial ^2 S_\mathrm{m}/\partial T^2\) derivatives.  相似文献   

5.
Understanding the scope and limitations of non-destructive testing procedure is essential for selecting the appropriate test parameters for material inspection. This paper presents the scope of material (\( \delta_{s} \)) and probe dependent (\( \delta_{t} \)) penetration depths for determining the optimal test frequency (\( f_{opt} ) \) for detection of sub surface defects in electrically thick conducting specimens. Numerical modelling is carried out for a pancake coil above an electrically thick aluminium plate, \( t/\delta_{t} \)?>?1, to study the influence of the EC probe and defect location (\( t_{df} \)) on the test frequency for near and deep sub surface defects. The study concludes that the optimal test frequency, \( f_{opt} \) for detection of deep sub surface defects (\( t_{df} /t \approx 1 \)) is determined by the probe dependent skin depth, \( \delta_{t} \), and the plate thickness is related to \( f_{opt} \) by, \( t \propto 1/\sqrt {f_{opt} } \). The numerical observations were experimentally validated for machined sub surface notches on a 10 mm thick (\( t \)) aluminium plate.  相似文献   

6.
We prepared a lead-free ceramic (\(\hbox {Ba}_{0.85}\hbox {Ca}_{0.15})(\hbox {Ti}_{1-x}\hbox {Zr}_{x})\hbox {O}_{3}\) (BCTZ) using the conventional mixed oxide technique. The samples were prepared by an ordinary mixing and sintering technique. In this study we investigated how small amounts of \(\hbox {Zr}^{4+}\) can affect the crystal structure and microstructure as well as dielectric and piezoelectric properties of \(\hbox {BaTiO}_{3}\). X-ray diffraction analysis results indicate that no secondary phase is formed in any of the BCTZ powders for \(0 \le x \le 0.1\), suggesting that \(\hbox {Zr}^{4+}\) diffuses into \(\hbox {BaTiO}_{3}\) lattices to form a solid solution. Scanning electron microscopy micrographs revealed that the average grain size gradually increased with \(\hbox {Zr}^{4+}\) content from 9.5 \(\upmu \!\hbox {m}\) for \(x = 0.02\) to 13.5 \(\upmu \!\hbox {m}\) for \(x = 0.1\); Curie temperature decreased due to the small tetragonality caused by \(\hbox {Zr}^{4+}\) addition. Owing to the polymorphic phase transition from orthorhombic to tetragonal phase around room temperature, it was found that the composition \(x = 0.09\) showed improved electrical properties and reached preferred values of \(d_{33} = 148\) pC \(\hbox {N}^{-1}\) and \(K_{\mathrm{p}} = 27\%\).  相似文献   

7.
We show how to find s-PD-sets of the minimal size \(s+1\) for the \(\left[ \frac{q^n-q^u}{q-1},n,q^{n-1}-q^{u-1}\right] _q \) MacDonald q-ary codes \(C_{n,u}(q)\) where \(n \ge 3\) and \(1 \le u \le n-1\). The construction of [6] can be used and gives s-PD-sets for s up to the bound \(\lfloor \frac{q^{n-u}-1}{(n-u)(q-1)} \rfloor -1\), of effective use for u small; for \(u \ge \lfloor \frac{n}{2} \rfloor \) an alternative construction is given that applies up to a bound that depends on the maximum size of a set of vectors in \(V_u(\mathbb {F}_q)\) with each pair of vectors distance at least 3 apart.  相似文献   

8.
In-situ-grown \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\)-reinforced \(\hbox {SiO}_{2}\textendash \hbox {Al}_{2}\hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}\) \((\hbox {La}_{2}\hbox {O}_{3})\) self-reinforced glass–ceramic composites were obtained without any \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\) seed crystal. These composites with different compositions were prepared in a nitrogen atmosphere for comparison of phase transformation and mechanical properties. The results showed that \(\hbox {SiO}_{2}\textendash \hbox {Al}_{2}\hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}\) \((\hbox {La}_{2}\hbox {O}_{3})\) glass can effectively promote \(\upalpha \)- to \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\) phase transformation. The crystallized \(\hbox {Y}_{2}\hbox {Si}_{2}\hbox {O}_{7}\textendash \hbox {La}_{4.67}\hbox {Si}_{3}\hbox {O}_{13}\) phases with a high melting point significantly benefited the high-temperature mechanical properties of the composites. The \(\hbox {Si}_{3}\hbox {N}_{4}\textendash \hbox {SiO}_{2}\textendash \hbox {Al}_{2} \hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}\) \((\hbox {La}_{2}\hbox {O}_{3})\) glass–ceramic composites exhibit excellent mechanical properties compared with unreinforced glass–ceramic matrix, which is undoubtedly attributed to the elongated \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\) grains. These glass–ceramic \(\hbox {Si}_{3}\hbox {N}_{4}\) composites with excellent comprehensive properties might be a promising material for high-temperature applications.  相似文献   

9.
The effect of Ba(\(\hbox {Mg}_{1/8}\hbox {Nb}_{3/4})\hbox {O}_{3}\) phase on structure and dielectric properties of \(\hbox {Ba(Mg}_{1/3}\hbox {Nb}_{2/3})\hbox {O}_{3}\) was studied by synthesizing \((1{-}x)\hbox {Ba(Mg}_{1/3}\hbox {Nb}_{2/3})\hbox {O}_{3}{-}x\hbox {Ba}(\hbox {Mg}_{1/8}\hbox {Nb}_{3/4})\hbox {O}_{3}\) (\(x = 0\), 0.005, 0.01 and 0.02) ceramics. Superlattice reflections due to 1:2 ordering appear as low as \(1000^{\circ }\hbox {C}\). \(\hbox {Ba}(\hbox {Mg}_{1/3}\hbox {Nb}_{2/3})\hbox {O}_{3}\) forms solid solution with \(\hbox {Ba}(\hbox {Mg}_{1/8}\hbox {Nb}_{3/4})\hbox {O}_{3}\) for all ‘x’ values studied until \(1350^{\circ }\hbox {C}\). Ordering was confirmed by powder X-ray diffraction pattern, Raman study and HRTEM. Ceramic pucks can be sintered to density \({>}92\%\) of theoretical density. Temperature and frequency-stable dielectric constant and nearly zero dielectric loss (tan \(\delta \)) were observed at low frequencies (20 MHz). The sintered samples exhibit dielectric constant (\(\varepsilon _{\mathrm{r}})\) between 30 and 32, high quality factor between 37000 and 74000 GHz and temperature coefficient of resonant frequency (\(\tau _{\mathrm{f}})\) between 21 and \(24\hbox { ppm }^{\circ }\hbox {C}^{-1}\).  相似文献   

10.
The superconducting phase transition at \(T_\mathrm{c} = 2.3\) K was observed for the electrical resistivity \(\rho ({T})\) and magnetic susceptibility \(\chi (T)\) measurements in the ternary compound La\(_{5}\hbox {Ni}_{2}\hbox {Si}_{3}\) that crystallizes in the hexagonal-type structure. Although a single-phase character with the nominal stoichiometry of the synthesized sample was confirmed, a small trace of the La–Ni phase was found, being probably responsible for the superconducting behaviour in the investigated compound. The magnetization loop recorded at \({T} = 0.5\) K resembles a star-like shape which indicates that the density of the critical current can be strongly suppressed by a magnetic field. The low-\(T _{\rho }(T)\) and specific heat \({C}_\mathrm{p}({T})\) data in the normal state reveal simple metallic behaviour. No clear evidence of a phase transition to any long- or short-range order was found for \(C_\mathrm{p}(T)\) measurements in the T-range of 0.4–300 K.  相似文献   

11.
Since many years it is known that argon impurities in oxygen change the temperature of the oxygen triple point by \(+12 \hbox { K}{\cdot }\mathrm{mol}^{-1}\) (positive, while most impurities decrease the temperature) without any effect on the melting range of this transition, for the impurity concentrations usually encountered in nominally pure gases. It has been hypothesized that thermal measurements on the \(\alpha -\beta \) solid-to-solid transition at 23.8 K or the \(\beta -\gamma \) solid-to-solid transition at 43.8 K may give reliable evidence regarding the argon content. However, such measurements require very long times for full completion of each transition (with prohibitive costs if liquid helium is used) and for the \(\alpha -\beta \) solid-to-solid transition the heat pulse method cannot be applied reliably. The availability of closed-cycle refrigerators permits the first obstacle to be surmounted. The automatic system earlier developed at INRIM during the EU Multicells project and used extensively for the project on the isotopic effect in neon is perfectly suited for such measurements. Thus, the uncertainties of the temperature measurements are similar to those obtained previously (of the order of 0.1 mK or less). Three argon-in-oxygen mixtures were prepared gravimetrically and certified at KRISS, just as was previously done for the work on the neon isotopic compositions. Results of continuous-current measurements on the \(\alpha -\beta \) solid-to-solid transition, along with the triple-point data obtained with the heat pulse method, are presented for one cell with a known doped argon content, to be compared with similar data from a cell with oxygen of very high purity. In addition, some preliminary data for the \(\beta -\gamma \) solid-to-solid transition are given. The measurements on the mixture with the highest argon content, about \(1002\, \upmu \hbox {mol}{\cdot } \mathrm{mol}^{-1}\), imply a (linear) sensitivity of \((116 \pm 7) \hbox {K}{\cdot }\mathrm{mol}^{-1}\) for the \(\alpha -\beta \) transition. This sensitivity may be different at much lower argon contents, and follow-up measurements with the other (smaller) mixtures will shed light on the linearity of this dependence.  相似文献   

12.
A study was conducted to ascertain the effect of variation in spin speed and baking temperature on \(\upbeta \)-phase content in the spin-coated poly(vinylidene fluoride) (PVDF) thick films (\({\sim }4{-}25\,\upmu \hbox {m}\)). Development of \(\upbeta \)-phase is dependent on film stretching and crystallization temperature. Therefore, to study the development of \(\upbeta \)-phase in films, stretching is achieved by spinning and crystallization temperature is adjusted by means of baking. PVDF films are characterized using Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. It is observed that crystallization temperature lower than \(60^{\circ }\hbox {C}\) and increase in spin speed increases the \(\upbeta \)-phase content in PVDF films. Crystallization temperature above \(60^{\circ }\hbox {C}\) reduces \(\upbeta \)-phase content and increases \(\upalpha \)-phase content. It was also observed that viscosity of the PVDF solution affects the \(\upbeta \)-phase development in films at a particular spin speed.  相似文献   

13.
Keeping the importance of developing suitable radome (a word derived from radar \(+\) dome) materials and near-net shape consolidation technique for manufacturing radomes suitable for hypersonic (>mach 5) radar-guided missiles in India, the International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, has initiated an in-house R&D programme and successfully developed a complete process know-how for manufacturing defect-free prototype \(\upbeta \)-SiAlON-based radome structures with all the desired properties. As a part of this R&D programme, total six separate sub-projects mentioned below were undertaken and executed: (i) identification of the best composition out of \(\upbeta \)-\(\hbox {Si}_{6-z}\hbox {Al}_{z}\hbox {O}_{z}\hbox {N}_{8-z}\) (0 \(\le z \le \) 4.1) solid solution, which possesses a right combination of properties required for radome applications, (ii) designing of an AlN-free precursor mixture for consolidating \(\upbeta \)-\(\hbox {Si}_{4}\hbox {Al}_{2}\hbox {O}_{2}\hbox {N}_{6}\) ceramics by following aqueous colloidal processing routes, (iii) development of a process for passivating water-sensitive AlN powder against hydrolysis, (iv) development of aqueous gelcasting (GC) and hydrolysis-assisted solidification (HAS) powder processing routes for consolidating dense \(\upbeta \)-SiAlON ceramics using highly solids loaded (>50 vol%) aqueous slurries, (v) development of an hydrolysis-induced aqueous gelcasting (GCHAS) process, a novel near-net-shape consolidation technique, to produce radomes with very high-production yields and (vi) development of an economic route for synthesizing the low-dielectric constant and high strength novel \(\upbeta \)-SiAlON-\(\hbox {SiO}_{2}\) ceramic composites. In this paper, (i) the basis for choosing \(\upbeta \)-SiAlON-based ceramics for hypervelocity radome applications, and (ii) the various bottle-neck problems faced, while executing this entire R&D work and the way they were overcome have been critically analysed and discussed systematically, while citing all the relevant and important references.  相似文献   

14.
The temperature-dependent current–voltage (\(I\text {--}V\)) and capacitance–voltage (\(C\text {--}V\)) characteristics of the fabricated Al/p-Si Schottky diodes with the polythiopene–SiO\(_{2}\) nanocomposite (\(\hbox {PTh--SiO}_{2}\)) interlayer were investigated. The ideality factor of \(\hbox {Al}/\hbox {PTh--SiO}_{2}/{p}\text {-Si}\) Schottky diodes has decreased with increasing temperature and the barrier height has increased with increasing temperature. The change in the barrier height and ideality factor values with temperature was attributed to inhomogeneties of the zero-bias barrier height. Richardson plot has exhibited curved behaviour due to temperature dependence of barrier height. The activation energy and effective Richardson constant were calculated as 0.16 eV and \(1.79 \times 10^{-8} \hbox {A\,cm}^{-2} \,\hbox {K}^{-2}\) from linear part of Richardson plots, respectively. The barrier height values determined from capacitance–voltage–temperature (\(C\text {--}V\text {--}T\)) measurements decrease with increasing temperature on the contrary of barrier height values obtained from \(I\text {--}V\text {--}T\) measurements.  相似文献   

15.
Given positive integers \(n_1,\ldots ,n_p\), we say that a submonoid M of \(({\mathbb N},+)\) is a \((n_1,\ldots ,n_p)\)-bracelet if \(a+b+\left\{ n_1,\ldots ,n_p\right\} \subseteq M\) for every \(a,b\in M\backslash \left\{ 0\right\} \). In this note, we explicitly describe the smallest \(\left( n_1,\ldots ,n_p\right) \)-bracelet that contains a finite subset X of \({\mathbb N}\). We also present a recursive method that enables us to construct the whole set \(\mathcal B(n_1,\ldots ,n_p)=\left\{ M|M \quad \text {is a} \quad (n_1,\ldots ,n_p)\text {-bracelet}\right\} \). Finally, we study \((n_1,\ldots ,n_p)\)-bracelets that cannot be expressed as the intersection of \((n_1,\ldots , n_p)\)-bracelets properly containing it.  相似文献   

16.
Thin films of optimally doped(001)-oriented \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) are epitaxially integrated on silicon(001) through growth on a single crystalline \(\hbox {SrTiO}_{3}\) buffer. The former is grown using pulsed-laser deposition and the latter is grown on Si using oxide molecular beam epitaxy. The single crystal nature of the \(\hbox {SrTiO}_{3}\) buffer enables high quality \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) films exhibiting high transition temperatures to be integrated on Si. For a 30-nm thick \(\hbox {SrTiO}_{3}\) buffer, 50-nm thick \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) films that exhibit a transition temperature of \(\sim \)93 K, and a narrow transition width (<5 K) are achieved. The integration of single crystalline \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) on Si(001) paves the way for the potential exploration of cuprate materials in a variety of applications.  相似文献   

17.
\(\hbox {Pr}^{3+}\) doped molybdenum lead-borate glasses with the chemical composition 75PbO?[25–(x \(+\) y)\(\hbox {B}_{2}\hbox {O}_{3}]\)\(y\hbox {MoO}_{3}\)\(x\hbox {Pr}_{2}\hbox {O}_{3}\) (where \(x = 0.5\) and 1.0 mol% and \(y = 0\) and 5 mol%) were prepared by conventional melt-quenching technique. Thermal, optical and structural analyses are carried out using DSC, UV and FTIR spectra. The physical parameters, like glass transition \((T_{\mathrm{g}})\), stability factor \((\Delta T)\), optical energy band gap \((E_{\mathrm{gopt}})\), of these glasses have been determined as a function of dopant concentration. The \({T}_{\mathrm{g}}\) and optical energy gaps of these glasses were found to be in the range of 290–350\({^{\circ }}\hbox {C}\) and 2.45–2.7 eV, respectively. Stability of the glass doped with \(\hbox {Pr}^{3+}\) is found to be moderate (\(\sim \)40). The results are discussed using the structural model of Mo–lead-borate glass.  相似文献   

18.
A LiNbO3 bicrystal that contains a {2\( \bar{1} \) \( \bar{1} \)0} low-angle grain boundary with both of 2° tilt misorientation and a slight twist misorientation was fabricated, and resulting dislocation structure at the boundary was analyzed by using transmission electron microscopy (TEM) and scanning TEM. The observations revealed that two types of dislocations of b = 1/3 <2\( \bar{1} \) \( \bar{1} \)0> and b = <10\( \bar{1} \)0> are formed at the boundary. A 1/3 <2\( \bar{1} \) \( \bar{1} \)0> dislocation, which dissociates into two partial dislocations with a {2\( \bar{1} \) \( \bar{1} \)0} stacking fault in between, compensates only tilt misorientation of the boundary. On the other hand, it was found that a <10\( \bar{1} \)0> dislocation, which dissociates into three equivalent partial dislocations with b = 1/3 <10\( \bar{1} \)0>, has both edge and screw components in total. That is, the <10\( \bar{1} \)0> dislocations are formed to compensate the twist misorientation of the boundary, in addition to the tilt misorientation. It is interesting that the three partial dislocations from a <10\( \bar{1} \)0> dislocation are arranged in a zigzag pattern with left–right asymmetry. This special configuration is suggested to originate from the presence of stable stacking fault structure on the {2\( \bar{1} \) \( \bar{1} \)3} plane in LiNbO3.  相似文献   

19.
The structural, optical, dynamical, and thermodynamic properties of BaZn\(\hbox {O}_{2}\) under pressure are studied based on the density functional theory. The calculated structural parameters are consistent with the available experimental data. In the ground state, the electronic band structure and density of states indicate that BaZn\(\hbox {O}_{2}\) is an insulator with a direct gap of 2.2 eV. The Mulliken charges are also analyzed to characterize the bonding property. After the structural relaxation, the optical properties are studied. It is found that the dielectric function of E \(\Vert x\hbox { and }E\Vert y\) are isotropic, whereas the \(E\Vert x\) and \(E\Vert z\) are anisotropic. The effect of pressure on the energy-loss function in the ultraviolet region becomes more obvious as the pressure increases. Furthermore, the dynamical properties under different pressures are investigated using the finite displacement method. We find that the \(P3_{1}21\) phase of \(\hbox {BaZn}\hbox {O}_{2}\) is dynamically stable under the pressure ranging from 0 GPa to 30 GPa. The phonon dispersion curves, phonon density of states, vibrational modes and atoms that contribute to these vibrations at \({{\varvec{\Gamma }}}\) point under different pressures are also reported in this work. Finally, by employing the quasi-harmonic approximation, the thermodynamic properties such as the temperature dependence of the thermal expansion coefficient, specific heat, entropy and Gibbs free energy under different pressures are investigated. It is found that the influences of the temperature on the heat capacity are much more significant than that of the pressure on it.  相似文献   

20.
In this work, lanthanide \(\beta \)-diketonate complexes Ln(btfa)\({}_{3} \cdot 2\hbox {H}_{2}\)O (Ln\(^{3+}\): Eu\(^{3+}\), Sm\(^{3+ }\), and Tb\(^{3+}\); btfa: 4,4,4-trifluoro-l-phenyl-1,3-butanedione) were incorporated into silica gels by a sol–gel method. Photoacoustic (PA) spectra of these complex-doped silica samples were measured and studied. The PA intensity of the \(\beta \)-diketonate ligand is nearly the same for lanthanide complexes in wet gels. After heat treatment at 150 \(^{\circ }\)C, however, the PA intensity of the ligand increases for Eu\(^{3+}\), Sm\(^{3+}\), and Tb\(^{3+}\) complexes in silica gels, respectively. Different PA intensities of the samples are interpreted by comparison with their luminescence spectra. The luminescence result is consistent with the PA spectra. The result indicates that lanthanide \(\beta \)-diketonate complexes cannot be formed in silica gels without a suitable heat treatment. Moreover, the relaxation process model is proposed based on the PA and luminescence results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号