首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用共沉淀法制备出K2O-SnO2-LiZnVO4系湿敏陶瓷材料,考察了液相掺杂K 对材料湿敏特性的影响,研究了材料的灵敏度、电容特性、阻抗特性等湿敏性能.实验结果表明: K 液相掺杂为10 mol%时可使材料具有低湿电阻小,灵敏度适中的特性.测试频率对试样的阻抗-相对湿度特性曲线影响较大,100 Hz时曲线的线性度最好.试样的电容在低频范围随相对湿度的升高而增大,但高频范围几乎不随相对湿度变化.  相似文献   

2.
用复阻抗方法对硅衬底纳米钛酸钡湿敏元件的感湿机理进行了分析。实验测量了湿敏元件在不同相对湿度下的复阻抗特性曲线及阻抗、电容等参数随频率的变化曲线。分析出相应的等效电路,推导了等效电路有关参数,分析讨论了纳米钛酸钡湿敏元件的感湿机理。低湿时,感湿材料本身颗粒电阻和电容及吸附的少量水分子共同起作用;高湿时,吸附的水分子电离和极化起主要作用。  相似文献   

3.
采用纳米铁酸镧与高分子复合材料制成湿敏元件。研究了复合材料和湿敏元件的制作,测试讨论了灵敏度、湿滞、电容特性、阻抗特性、响应 恢复时间等湿度敏感特性。结果表明:元件的灵敏度较高、湿滞较小,元件的电容值和阻抗值随频率与相对湿度而变化。  相似文献   

4.
采用水热腐蚀铁钝化法在单晶硅片上生长铁钝化多孔硅(IPS)薄膜,以IPS为感湿介质制成湿敏元件。在不同湿度环境以及测试频率下,测出其电容值,得到了IPS的湿敏特性曲线。研究发现,当相对湿度从11%RH逐渐增加到95%RH的过程中,在测试频率为100Hz时,IPS湿敏元件的电容值增大幅度达1500%,电容响应时间在升湿过程和脱湿过程分别为15s和5s,并且IPS湿敏元件的温度系数在15℃到35℃的范围内较小。结果表明:IPS湿敏元件的特性包括灵敏度、响应时间以及温度系数等均优于多孔硅(PS)湿敏元件的特性。  相似文献   

5.
利用ZrO2:TiO2复合纳米纤维制作了特性良好的电容型湿度传感器.该湿敏元件在100 Hz测量频率下灵敏度较高,线性度较好.其电容值在11% ~98%相对湿度范围内从20 pF变化到1.5×105 pF.文中从直流特性(伏安特性、极性反转瞬时性)和交流特性(复阻抗)的角度分析了该湿敏元件的感湿机理.利用瞬时直流极性反...  相似文献   

6.
SnO2-LiZnVO4系湿敏陶瓷烧结工艺与电性能关系的复阻抗分析   总被引:1,自引:0,他引:1  
采用共沉淀法制备出SnO2-LiZnVO4系湿敏试样,分别在不同烧结温度和保温时间下于空气中烧成,测量试样的湿敏特性,并通过复阻抗分析方法,研究了SnO2系湿敏元件烧结工艺与电性能的关系,探讨烧结工艺对敏感材料微结构的影响.结果表明: 适当调整烧结工艺参数可明显改善材料的微结构和湿敏性能,850℃×1h试样具有高湿电阻小灵敏度适中的湿敏特性;复阻抗分析表明,试样的电容在低频范围随烧结温度的升高和保温时间的延长先减小后增大,但高频范围几乎不随烧结温度的变化,且随时间的延长,试样的复阻抗谱的半圆弧弧长逐渐增大.  相似文献   

7.
采用共沉淀法制备出K2O-SnO2-L iZnVO4系湿敏陶瓷材料,考察了液相掺杂K+对材料湿敏特性的影响,通过复阻抗分析方法,研究了材料的电性能,并进一步分析了试样在不同湿度中的导电机理和等效电路。结果表明:K+液相掺杂的摩尔分数为10%时可使材料具有低湿电阻小,灵敏度适中的特性。复阻抗分析表明:试样的电容在低频范围随相对湿度的升高而增大,但高频范围几乎不随相对湿度变化,且试样在低湿时主要以电子导电为主,高湿时以离子导电为主。  相似文献   

8.
纳米ZrO2 基烧结型双敏元件的研究􀀂   总被引:3,自引:1,他引:3  
纳米ZrO2作为一种新型的陶瓷材料已被应用于许多领域.本文主要介绍了低温强碱法制备纳米ZrO2材料,利用纳米ZrO2进行掺杂制作的元件有较好的气、湿敏特性.元件具有响应恢复快、结构简单等特点.作为湿敏元件时元件电容随湿度变化大,温度影响较小.作为电阻型气敏元件时,元件对NH3的选择性高.  相似文献   

9.
用外延生长法,在具有二氧化硅层的单晶硅衬底上外延生长一层多晶硅,采用平面工艺在其上形成具有数千个矩形小孔的精密阵列,构成多晶硅阵列式湿敏元件.对元件的特性进行了研究,其吸湿响应时间为280ms,脱湿响应时间为620ms.在理论上,引入两种水分子与阵列作用机制,其一,水分子与多晶硅晶界的作用;其二,水分子与阵列结构的碰撞作用.由此计算了元件阻值随相对湿度变化的关系为R=R_0(1-Ax%)/(1+Dx%)将理论值与实验值进行比较, 两者吻合较好.  相似文献   

10.
0 前 言由各种材料制成的阻抗式湿敏元件,虽然其灵敏度高,但温度系数也大,其阻抗对温度的函数关系复杂。这给湿度传感器带来温度补偿的困难。实践证明,采用阻抗式传感器来检测湿度,检测误差大,动态特性与静态特性都不太理想。对湿度控制系统来说,湿度检测是个难点,也是关键。笔者采用新型电容式湿度传感器与逻辑鉴宽器结合,能方便而可靠地调节湿度。1 电容式湿敏元件几何结构一定的电容器,其电容量与两极间介质的介电常数成正比。而介电常数又随空气湿度变化而变化。依此原理可制成电容式湿敏元件。专门用于检测湿度的电容介…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号