首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For polycrystalline Ag/Bi-2223 tapes, the preferential orientation of grains is a very important issue. The platelike grains in the tapes are generally believed in a high-order alignment. However, microstructural observation by SEM shows that the grain alignment is far from perfect. Theoretically, upper critical field, H c2, for H parallel to ab plane and c axis was calculated form the relation of M(H). However, the ratio of H c2 (H//ab) to H c2(H//c) depends on the angle () between the ab plane of grains and the broad surface of the tapes. Based on the ratio, the orientation distribution of grains is obtained. The results show that grains in Ag/Bi-2223 tapes can grow with ab plans at any angle between 75° > > –75°, but no grain can grow with its ab plane perpendicular to the tape broad surface. The overall distribution is that: >90% grains orient in the angle range of || < ± 75°, about 5% grains at ±75° || ±85°, and no grains at || > ±85°.  相似文献   

2.
Outgrowths of Bi-system superconducting multifilament tapes were known as an imperfect that could increase ac-current loss. To approach this problem sintering temperature dependent of outgrowth was studied and experimental results were reported in this text. Tapes in the experiments were sheathed with pure silver and silver alloys and carefully treated. Critical current I c of the sintered tapes was measured at 77 K. Compound phases in tapes were determined by analysis of X-ray powder diffraction. Outgrowths of the tapes were observed and studied by Scanning Electron Microscope. Experimental results showed that outgrowths changed when sintering temperatures increased. It was found that the best sintering temperature for Ag sheathed tape was 840°C, and that for Ag/Mg and Ag/Sb sheathed tapes was lower than 835°C.  相似文献   

3.
对4种Bi系2223高温超导带材77 K下的力学性质进行了实验研究.通过选择合适的合金包套替代传统的银包套,带材的机械性能能有所提高,但电学性质有所降低,尤其是内包套采用合金、外包套采用银,其机械性能反而低于纯银包套带材.通过X射线衍射图谱发现,当包套采用合金材料,尤其是内包套采用合金、外包套仍采用纯银,会大大降低样品中2223相的体积含量.相比较临界电流密度,n值对材料的破坏更为敏感.利用X光同步辐射技术初步探讨了银包套带材在室温和77 K下的损伤破坏过程.  相似文献   

4.
E.S. Otabe  M. Kiuchi  K. Fujino  B. Ni 《低温学》2009,49(6):267-270
A practical Bi-2223 superconducting magnet, working in liquid nitrogen (L.N2), was designed and fabricated. Bi-2223 tape with a critical current of 147 A was prepared by a controlled overpressure (CT-OP) process at 77.3 K in self-field. Ten double-pancake coils were resistively connected by copper terminals. The bore diameter was 54 mm?, the magnet outer diameter was 122 mm?, the height of the magnet was 124 mm, and the weight of the magnet was about 3 kg. The maximum magnetic field at the center of the bore was 0.48 T with an operating current of 50 A. The experimental results agree well with design predictions calculated by finite element method. AC operation was also performed, and no distortion of the voltage waveform was observed. Therefore, this Bi-2223 superconducting magnet is a suitable replacement for copper magnets designed for applications in science and technology.  相似文献   

5.
Multifilamentary HTSC tapes are important for their applications in various electrical devices. Powder-in-tube technique with improved optimized synthesis parameters is regarded as one of the most promising ways to prepare long-length multifilamentary Bi-2223/Ag tapes. Nevertheless, usefulness of such tapes depends on their electrical and mechanical properties. Critical current density of a Bi-2223/Ag tape with 37 filaments has been studied at 77 K with field, field orientation, thermal cycling and bending strain as parameters. Results have been discussed in light of various mechanisms and models. A small pancake coil has been fabricated out of the same tape and the test results presented.  相似文献   

6.
To improve on present critical current (J c) performance, multifilamentary Ag/Bi-2223 tapes with a large range of reduction rates were manufactured. The relative core mass density D was calculated, dependent on the measured geometric dimensions of the tapes. Experimental results, D vs. J c, D vs. maximum pinning force density F max , and D vs. irreversible magnetic field B irr, are quantitatively formatted. In particular, the magnetic field dependence of J c is critically dependent on its core density. If the core density increases by 10%, J c of the tapes in this experiment is enhanced by as much as 100%. Therefore, in the present state of the technological process for manufacturing Ag/Bi-2223 tape, increasing the core density is clearly a significant strategy in improving the electronic and magnetic properties of the tapes and enhancing the capacity for carrying current at high magnetic fields. The limit of the bulk self-field-J c can be calculated by the relationships of J c vs. D. The limit is estimated to be on the order of 200 kA/cm2 for multifilamentary Bi-2223 tapes, which was supported by magneto-optical (MO) magnetization measurements results. It is a hard task to approach this limit with the present state of the art in manufacturing Ag/Bi-2223 tape, and it is the time to suggest some new ideals for Bi-2223 tapes to promote large-scale applications.  相似文献   

7.
T.-M. Qu  Y. Song  L. Zhao  P. Li  Z. Han 《低温学》2007,47(2):127-131
Optimization heat-treatments have been performed on multi-filament Bi-2223/Ag superconducting tapes under 1 bar total gas pressure, the oxygen partial pressure being 8.5%. In a first heat-treatment (HT1), the tapes were sintered within 822-838 °C for 1-50 h. After intermediate deformation, all the samples underwent the second heat-treatment (HT2) at 825 °C and 830 °C for 20 h followed by a thermal sliding procedure. The relative content of the phases present in HT1 samples was measured by XRD. It was found that the Bi-2212 phase content after HT1 strongly influences the values of Jc after HT2. There is a correlation between the amount of Bi-2212 phase after HT1 and the final Jc values after HT2. A maximum of Jc was found for a ratio of 0.15 between Bi-2212 and Bi-2223.  相似文献   

8.
For the endurance evaluation of High Temperature Superconductors (HTS), the mechanical and transport properties of multifilamentary Bi2Sr2Ca2Cu3O10+x (Bi-2223) superconducting tapes with different reinforcements subjected to high-cycle axial fatigue loading were investigated at 77 K in the self-field. The mechanical fatigue limits based on the relations between the applied stress amplitude and the numbers of cyclic steps to reach failure (S-Nf curves) were obtained. The transport properties were evaluated with the increase of repeated cycles, N, at different applied stress amplitudes which eventually leads to the electric fatigue limit. The influence of reinforcement on the mechanical and transport properties of Bi-2223 tapes were discussed. Fractographic observation was performed in order to understand the Ic degradation mechanism in fatigue tested Bi-2223 tapes.  相似文献   

9.
本文主要研究了Bi223/Ag带材的弯曲应力-应变特征及弯曲疲劳对其在77K自场下临界电流的影响.分析临界电流Ic降低的原因是应变和热循环引起的超导陶瓷芯内部的微裂纹.实验研究发现当带材的弯曲应变超过0.3%以后,Ic显著降低;当带材受到多次弯曲时,前四次弯曲会使Ic急剧降低,然后Ic降低非常缓慢.因此,在实际应用过程中,应使Bi223/Ag带材的弯曲应变不超过0.3%,且在Bi223/Ag带材的生产和使用过程中,均应尽量减少其弯曲的次数.  相似文献   

10.
The Anderson–Kim model for a granular superconductor was employed to calculate both temperature and magnetic field dependencies of the AC susceptibility of a Bi-2223 superconductor. Moreover, similar calculations were performed for the magnetization. The prediction of the model, including the intergranular and intragranular contribution, for susceptibilities and magnetizations was consistent with experimental data very well by considering the temperature-dependent effective volume fraction. The temperature-dependence of fitting parameters was shown to obey almost quadratic power relation (1–T/T c) with 2.  相似文献   

11.
通过采用机械合金化方法制备的高活性的粉体,可以高度可重复性地制备高质量的铁基超导材料Sm0.85Nd0.15FeAsO0.85F0.15.样品具有高临界温度Tc(约51 K)和高临界场Hc2(达到377 T).由WHH公式确定的Hc2显著高于常规固相方法制备样品的典型值(<200 T).高的临界磁场Hc2与样品微结构有很大关系.机械合金化处理的原始粉体包含大量的晶格畸变缺陷,在快速升温和低温退火制备的小晶粒陶瓷样品中这些缺陷会部分残留,因此形成有效的磁通钉扎,从而提高样品的临界场.  相似文献   

12.
Silver clad Bi-2223 tapes with consistently high critical current densities of over 30,000 A/cm2 at 77 K and zero field were prepared by powder-in-tube (PIT) technique. Powder XRD, electron microscopy, a.c. susceptibility and critical current measurements were used to study the phase assemblage, microstructure and transport properties of these tapes at various stages of processing. The precursor powder for PIT process was prepared by a sol-gel route by acrylate method using freshly prepared nitrates of Bi, Pb, Sr, Ca and Cu. The carbon content in the powder was minimized by subjecting it under dynamic vacuum calcination followed by heating in free flow of oxygen for long durations with intermittent grindings. The choice of initial stoichiometry, high reactivity of the precursor, effective removal of carbon, choice of phase assemblage at the filling stage and the multistage thermomechanical processing at optimized conditions were found to be responsible for the high critical current density. The work was done under the National Superconductivity Programme funded by the Department of Science and Technology (DST), New Delhi.  相似文献   

13.
Sinter forging has been employed to improve critical current density of Bi-2223 bulks. After that, optimal post annealing is also very important to get good performance. Different annealing schedules have been used to produce Bi-2223 sinter-forged bulks in different atmospheres. In this paper, Bi-2223 long bulks were prepared by a combination of cold isostatic pressing (CIP) and sinter-forging techniques. The samples were undergone deformation rates from 50 to 90% totally. The effect of post annealing in atmosphere of 7.5% O2/N2 on critical current density Jc for such (Bi, Pb)2Sr2Ca2Cu3Oy long bulks was investigated. Their microstructure features and phase changes were also studied.  相似文献   

14.
DC magnetization and AC complex susceptibility measurements on (Bi,Pb) : 2223 high-temperature superconductors impurified with various amounts of BaZrO3 are presented. The results are discussed in the frame of the critical state model, and the values of the inter- and intragranular critical current density as well as of the field for full penetration are estimated. The values of the intergranular critical current density are consistent with those obtained from transport measurements. The intragranular critical current density and the field for full penetration have similar values from both DC magnetization and AC susceptibility measurements. It was shown that, in the (Bi,Pb) : 2223 system, BaZrO3 impurification changes only the properties of the intergrain matrix, while the superconducting properties of the grains are not modified.  相似文献   

15.
We report on the results of a comparative investigation of highly dense bulk MgB2 samples prepared by three methods: (i) hot deformation; (ii) high pressure sintering; and (iii) mechanical alloying of Mg and B powders with subsequent hot compaction. All types of samples were studied by AC susceptibility, DC magnetization, and resistivity measurements in magnetic fields up to 0 H = 160 kOe. A small but distinct anisotropy of the upper critical field connected with some texture of MgB2 grains was found for the hot deformed samples. The samples prepared by high pressure sintering as well as by mechanical alloying show improved superconducting properties, including high upper critical fields H c2 (0 H c2 (0) 23 T), irreversibility fields H irr which are strongly shifted towards higher values H irr(T) 0.8 H c2(T) and high critical current J c (J c = 105 A/cm2 at 20 K and 1 T).  相似文献   

16.
Studies of the effect of high power laser (Q-switched Ruby laser, 694 nm, 30 ns) irradiation on the critical current density (J c ) and magnetic hysteresis at 77K and temperature variation of microwave induced d.c. voltage on SmBa2Cu3O x ceramic samples have been performed. Irradiation did not substantially changeT c but caused a strong increase inJ c and magnetic hysteresis at 77K. The microwave-induced d.c. voltage at 77K showed appreciable decrease after irradiation. SEM studies showed grain growth due to sintering which improves the interconnectivity among the superconducting grains. These are attributed to physical densification and consequent reduction in the number of weak links. The increase of magnetic hysteresis after laser irradiation is presumably connected with the creation of defects which act as pinning centres. Thermal modelling suggests that on irradiation the surface melts up to a depth of 1μ and laser-induced evaporation occurs at energy density of 2·5 J/cm2.  相似文献   

17.
Bi2Sr2CaCu2Ox/AgMg conductors are potentially important for many applications up to 20 K, including magnets for cryogen-free magnetic resonance imaging and high field nuclear magnetic resonance research. One promising approach to increased critical current density is partial-melt processing in the presence of a magnetic field which has been shown to enhance c-axis texturing of wide, thin tape conductors. Here, we report on low aspect ratio rectangular conductors processed in an 8 T magnetic field. The magnetic field is applied during different stages of the heat treatment process. The conductors are electrically characterized using four-point critical current measurements as a function of magnetic field and magnetic field orientation relative to the conductor. The superconductive transition and magnetization hysteresis are measured using a SQUID magnetometer. The microstructures are characterized using scanning electron microscopy and energy dispersive spectroscopy and analyzed using digital image processing. It is found that the presence of a magnetic field during split melt processing enhances the electrical transport and magnetic behavior, but that the anisotropy is not consistently affected. The magnetic field also affects development of interfilamentary Bi2212 bridges, and that this depends on the initial shape of the Bi2212 filament. At least two behaviors are identified; one impacts the oxide phase assemblage and the other impacts textured growth.  相似文献   

18.
Abstract

Bi2 Sr2 CaCu2 Ox/AgMg conductors are potentially important for many applications up to 20 K, including magnets for cryogen-free magnetic resonance imaging and high field nuclear magnetic resonance research. One promising approach to increased critical current density is partial-melt processing in the presence of a magnetic field which has been shown to enhance c-axis texturing of wide, thin tape conductors. Here, we report on low aspect ratio rectangular conductors processed in an 8 T magnetic field. The magnetic field is applied during different stages of the heat treatment process. The conductors are electrically characterized using four-point critical current measurements as a function of magnetic field and magnetic field orientation relative to the conductor. The superconductive transition and magnetization hysteresis are measured using a SQUID magnetometer. The microstructures are characterized using scanning electron microscopy and energy dispersive spectroscopy and analyzed using digital image processing. It is found that the presence of a magnetic field during split melt processing enhances the electrical transport and magnetic behavior, but that the anisotropy is not consistently affected. The magnetic field also affects development of interfilamentary Bi2212 bridges, and that this depends on the initial shape of the Bi2212 filament. At least two behaviors are identified; one impacts the oxide phase assemblage and the other impacts textured growth.  相似文献   

19.
SiC掺杂对MgB2/Fe超导线材临界电流密度和显微结构的影响   总被引:1,自引:0,他引:1  
利用原位粉末套管法制备出SiC微粉掺杂的MgB2-x(SiC)x2/Fe(z=0.00、0.05、0.10、0.20)超导线材。在750℃,流通高纯氩气的条件下热处理1h后,大部分SiC没有参与取代B位的反应。随着x的增大,线材中非超导相SiC和Mg的含量增加,MgB2的平均晶粒尺寸变小,从而使可作为磁通钉扎中心的晶界的面积相应增加。在外加磁场中,MgB2超导线材的临界电流密度(Jc)随x增大逐步升高,至x=0.10时Jc性能最好,其在6K,5T时的Jc达到了8480A/cm^2,比未掺杂线材的Jc高出约70%。但是,当x=0.20时,Jc却有所下降。Jc的这种变化规律与SiC掺杂引起的MgB2晶粒变小,以及非超导相物质含量之间的相互平衡有关,其中MgB2晶粒变小是Jc提高的主要原因。  相似文献   

20.
Using the transport and magnetization measurements, the influence of neutron irradiation at a fluence of 5 × 1017 n cm−2 on (B0.65C0.35)Ba1.4Sr0.6Ca2Cu3O z has been investigated. The neutron irradiation was found to decrease critical temperature and transport critical current density, increase the residual and normal state resistivity, and improve the intragranular critical current density with 1.6 × 105 A/cm2 (at 77.3 K and in the applied field up to 160 kA m) and ΔM irrM nonirr ratio (up to factor of 3) at highest field used for investigation. The field dependence of this ratio, which is below the unity at very low field but higher than 1 at high fields, correlated with the shape of the hysteretic loops as well as with the change of the transport parameters after irradiation suggests the role of the irradiation-induced effects on the grain edges. We discuss these effects in the framework of the Bean-Livingstone surface barriers and geometrical barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号