首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The handover processes in present IP mobility management protocols incur significant latency, thus aggravating QoS of consumer devices. In this paper, we introduce an enhanced handover process for the Proxy Mobile IPv6 (PMIPv6) protocol, which is a recently developed IP mobility management protocol aiming at providing network-based mobility support. The proposed handover process further improves handover performance of PMIPv6 by allowing a new access network obtains handover context before a consumer??s mobile node (MN) moves to the new access network. Data packets destined for the MN are buffered to prevent packet loss and immediately delivered to the MN as the MN moves to the new access network. We evaluate the handover latency and data packet loss of the proposed handover process compared to the basic one of PMIPv6. The conducted analysis results confirm that the proposed handover process yields the reduced handover latency compared to that of the basic PMIPv6 and also prevents data packet loss. We moreover evaluate the buffering cost of the proposed handover process.  相似文献   

2.
Handover delay performance is a critical issue to support real-time applications in wireless networks. To address this issue, this paper presents an Enhanced fast handover Triggering Mechanism (ETM) to improve the handover performance of mobile nodes (MNs) in Fast Proxy Mobile IPv6 (FPMIPv6). Making use of the information from the link layer, the ETM predicts two cases that the MNs perform in the reactive handover mode. Then, it establishes the bi-directional tunnel in advance for fast handover. As a result, the reactive handover delay is significantly reduced. Integrating the ETM into FPMIPv6 forms an enhanced Fast Proxy Mobile IPv6 (eFPMIPv6) protocol. Simulation experiments show that with the presented ETM mechanism, the eFPMIPv6 outperforms the original FPMIPv6 in terms of the overall handover performance.  相似文献   

3.
The current IP mobility protocols are called centralized mobility management (CMM) solutions, in which all data traffic and management signaling messages must be forwarded to an anchor entity. In some vehicle scenarios, vehicles may move as a group from one roadside unit to another (i.e., after traffic lights or traffic jams). This causes data traffic and exchanged mobility messages to peak at the anchor entity and, consequently, affects the network performance. A new design paradigm aimed at addressing the anchor entity issue is called distributed mobility management (DMM); it is an IETF proposal that is still being actively discussed by the IETF DMM working group. Nevertheless, network-based DMM is designed based on the well-known network-based CMM protocol Proxy Mobile IPv6 (PMIPv6). There is no significant difference between network-based DMM and PMIPv6 in terms of handover latency and packet loss. Because vehicles change their roadside unit frequently in this context, the IP addresses of mobile users (MUs) require fast IP handover management to configure a new IP address without disrupting ongoing sessions. Thus, this paper proposes the Fast handover for network-based DMM (FDMM) based on the Fast Handover for PMIPv6 (PFMIPv6). Several modifications to PFMIPv6 are required to adapt this protocol to DMM. This paper specifies the necessary extensions to support the scenario in which an MU has old IP flows and hence has multiple anchor entities. In addition, the analytic expressions required to evaluate and compare the handover performance of the proposed FDMM and the IETF network-based DMM have been derived. The numerical results show that FDMM outperforms the IETF network-based DMM in terms of handover latency, session recovery and packet loss at the cost of some extra signaling.  相似文献   

4.
下一代无线网络将是异构IP网络,为了提供无缝切换服务,结合IETF提议的移动IPv6(MIPv6)协议与IEEE802.21工作组提出介质独立切换(MIH)标准,设计出一种基于MIH异构网络宏移动性的垂直切换方案。在NS-2仿真环境中,验证了此方案的可用性,详细分析了网络切换时延和丢包率,并根据分析结果提出进一步研究方向。  相似文献   

5.
Mobile IP (MIP) requires mobile nodes (MNs) to register with the home agents (HAs) whenever the MNs change their point of attachment (PoA: access point (AP) or base station (BS)) in different subnets. Thus, such registrations cause excessive signaling overhead and long service delay. To solve this problem, proxy mobile IPv6 (PMIPv6) has been proposed by the IETF NETLMM working group. In PMIPv6, a new entity called mobile access gateway (MAG) performs the mobility‐related signaling with the local mobility anchor (LMA) on behalf of the MN and establishes a tunnel with the LMA. However, a number of MNs must be associated with an MAG, which means that the MAG can be easily overloaded. Therefore, in this paper, we propose a load balancing mechanism among the MAGs in the PMIPv6 network. The PMIPv6 handover signaling procedure is extended to support the proposed load balancing mechanism. We also discuss using IEEE 802.21 Media Independent Handover (MIH) protocol for load balancing to determine the load status at the candidate PoAs, in addition to the load status at the candidate MAGs. To evaluate the performance, we analyze the average waiting time in the queue at the MAG. Through simulations and numerical analysis, we show that the proposed load balancing mechanism can produce less queueing delay at the MAG and a higher data transmission rate at the PoA than when a load balancing operation is not performed in the PMIPv6 network. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Excellent handover performance is essential for deploying real time applications over wireless Internets. In this paper, this study present a novel handover scheme for Mobile IPv6. The proposed scheme is based on an infrastructure, which is called Cross-layer Address Resolution (CAR). A smart message interaction for the Binding Update procedure is also introduced. The prototype is illustrated first and a buffering approach adopted to achieve zero packet loss. The proposed scheme, which is called Seamless Handover for Mobile IPv6 (S-MIPv6), evolved from Fast Handover for Mobile IPv6 (F-MIPv6). The problems in F-MIPv6, such as triangle route and sequence disorder, are solved by the proposed scheme. The S-MIPv6 avoids building tunnels and reduces registration delay. It is capable of cooperating with a Mobility Anchor Point (MAP) to take advantage from hierarchical networks. The S-MIPv6 is modeled and simulated. In a practical case, the disruption duration is close to the Data Link layer handover latency (50–100 ms). We believe that the proposed S-MIPv6 is capable of providing seamless handover for time critical services.  相似文献   

7.
As a network-based localized mobility management protocol, Proxy Mobile IPv6 (PMIPv6) enables a Mobile Host (MH) to roam within a localized domain without MH intervention in the mobility-related signalling. However, the PMIPv6 maintains MH mobility support in a restriction domain. Therefore, whenever the MH roams away from the PMIPv6 domain, its reachability status will be broken-down causing high handover latency and inevitable traffic loss for its communication session. This article proposes a proactive mechanism to mange the MH handover and maintain its data session continually across inter-PMIPv6-domains. The proposed mechanism introduces an intermediate global mobility anchor entity, called, which is responsible to coordinate MH handover as well as redirect its traffic across inter-PMIPv6-domains. Through various simulation evaluations, via ns-2, several experiments were conducted, revealing numerous results that verify the proposed mechanism superior performance over the conventional inter-PMIPv6-domain handover schemes in terms of handover latency, achieved throughput, protocol signalling cost and end-to-end traffic delivery latency.  相似文献   

8.
Mobile multicast is based on the traditional multicast protocols and the mobility support protocols to provide the multicast services for the mobile subscribers. Several mobile multicast methods were proposed in the past few years, but most of them are based on Mobile IPv6 and its variants which require the mobile node to support the mobility function. Recently, Proxy Mobile IPv6 (PMIPv6) was proposed to provide the mobility support for the mobile node with or without mobility function, and the previous studies have shown that PMIPv6 can improve the performance in term of the handover performance and protocol cost. However, PMIPv6 mainly concerns on the mobility support for unicast routing and little considers the multicast routing. In this paper, we propose two multicast methods called the MAG (Mobile Access Gateway)-based method and LMA (Local Mobility Anchor)-based method based on the different multicast delivery transmission path to extend PMIPv6, and analyze their performance under the different scenarios. The analytical results show that the LMA-based method is suitable for the higher speed, bigger domain size, and larger network topology scenarios, whereas the MAG-based method is suitable for the lower speed, smaller domain size and smaller network topology scenarios.  相似文献   

9.
With the development of the wireless internet, there are more and more mobile terminals. Without mobility management protocol, mobile terminals could not communicate with others terminals when they are away from their home network. Mobile IPv6 was proposed which is host-based mobility management protocol. But it has several drawbacks, such as wireless link resource waste, load or consumption of power in mobile terminal is large. To overcome the weakness of host-based mobility management protocol, network-based mobility management protocol called Proxy Mobile IPv6 (PMIPv6) is standardized by the internet engineering task force network-based localized mobility management working group, and it is starting to attract considerable attentions. Although several proposals have been made for handover and Route Optimization (RO) in PMIPv6, they still need too many communications, do not consider about seamless-handover and RO without out-of-sequence problem simultaneously. In this paper we proposed a time-efficient handover mechanism in PMIPv6 by using the improved RO. We use the characteristic of anycast to achieve the time efficiency. By the mathematical analysis we prove that the proposed protocol has shorter latency and supports faster mobility of the mobile terminals.  相似文献   

10.
The LTE (Long Term Evolution) technologies defined by 3GPP is the last step toward the 4th generation (4G) of radio technologies designed to increase the capacity and speed of mobile telephone networks. Mobility management for supporting seamless handover is the key issue for the next generation wireless communication networks. The evolved packet core (EPC) standard adopts the proxy mobile IPv6 protocol (PMIPv6) to provide the mobility mechanisms. However, the PMIPv6 still suffers the high handoff delay and the large packet lost. Our protocol provides a new secure handover protocol to reduce handoff delay and packet lost with the assistance of relay nodes over LTE networks. In this paper, we consider the security issue when selecting relay nodes during the handoff procedure. During the relay node discovery, we extend the access network discovery and selection function (ANDSF) in 3GPP specifications to help mobile station or UE to obtain the information of relay nodes. With the aid of the relay nodes, the mobile station or UE performs the pre-handover procedure, including the security operation and the proxy binding update to significantly reduce the handover latency and packet loss. The simulation results illustrate that our proposed protocol actually achieves the performance improvements in the handoff delay time and the packet loss rate.  相似文献   

11.
Recently, a network-based mobility management protocol called Proxy Mobile IPv6 (PMIPv6) is being actively standardized by the IETF NETLMM working group, and is starting to attract considerable attention among the telecommunication and Internet communities. Unlike the various existing protocols for IP mobility management such as Mobile IPv6 (MIPv6), which are host-based approaches, a network-based approach such as PMIPv6 has salient features and is expected to expedite the real deployment of IP mobility management. In this article, starting by showing the validity of a network-based approach, we present qualitative and quantitative analyses of the representative host-based and network-based mobility management approaches (i.e., MIPv6 and PMIPv6), which highlight the main desirable features and key strengths of PMIPv6. Furthermore, a comprehensive comparison among the various existing well-known mobility support protocols is investigated. Although the development of PMIPv6 is at an early stage yet, it is strongly expected that PMIPv6 will be a promising candidate solution for realizing the next-generation all-IP mobile networks.  相似文献   

12.
As IP has been extended from core networks to access networks, a mobile network can be considered as an overlay of a traditional cellular network and an IP network. SMS-MIPv6 attempts to integrate mobility management of these two kinds of networks. The basic idea behind SMS-MIPv6 is to exploit existing mobility management in the cellular network (i.e. in the form of well-defined short messages) to locate a Mobile Terminal (MT) in the IPv6 network. We should emphasize that the motivation of SMS-MIPv6 is not to replace or optimize existing mature mobility management schemes. On the contrary, as an entirely end-to-end mechanism for IPv6 mobility management, it provides an alternative mechanism for free peer-to-peer applications such as Voice over IP (VoIP) without support from mobile network operators. We describe the implementation of SMS-MIPv6 in detail and analyze its performance. The evaluation results show that SMS-MIPv6 achieves acceptable performance so that it can be deployed in most current mobile networks. It performs best in terms of signaling cost, data traffic overhead compared with Mobile IPv6 (MIPv6) and Proxy MIPv6 (PMIPv6). Moreover, SMS-MIPv6 can reduce the handover latency significantly, although it is considered as a mobility management scheme for global mobility. However, it increases the session initialization latency due to hybrid binding through the cellular network.  相似文献   

13.
《电子学报:英文版》2017,(5):1032-1040
Wireless LAN controller (WLC) is used to manage and control Access points (APs) in Wireless local area network (WLAN).Proxy mobile IPv6 (PMIPv6) protocol supports network-layer mobility in WLC based WLAN.However,it introduces extra delay in delivering packets from the APs to the WLC.We use Mobile access gateway (MAG) chain to reduce packet delay.The handoff delay and packet delivery delay under the proposed scheme are derived,based on which we formulate the delay minimization problem whose solution leads to the optimal MAG chain length.Numerical analysis results indicate that the proposed scheme outperforms the existing scheme in terms of delay in the case when the delay between Local mobility anchor (LMA) and WLC is relatively greater than the delay between two neighboring WLCs.The proposed scheme is able to reduce packet loss resulting from the traditional handoff procedure introduced in the PMIPv6 protocol and that due to delay limitation.  相似文献   

14.
Mobile IP allows a mobile node to maintain a continuous connectivity to the Internet when moving from one access point to another. However, due to the link switching delay and to Mobile IP handover operations, packets designated to mobile nodes can be delayed or lost during the handover period. Moreover, every time a new attach point is confirmed, the mobile node, its home agent and its corresponding node must be authenticated mutually. This paper presents a new control function called Extended Handover Control Function (E‐HCF) in order to improve handover performance and authentication in the context of Mobile IPv6 over wireless networks. With an analytical model and some OPNET simulations, we show in this paper that our solution allows provision of low latency, low packet loss and mutual authentication to the standard handover of Mobile IPv6. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Enhanced fast handover for proxy mobile IPv6 in vehicular networks   总被引:1,自引:0,他引:1  
To reduce the handover latency in PMIPv6, Fast Handover for PMIPv6 (PFMIPv6) is being standardized in the IETF. On the other hand, vehicle-roadside data access has been envisioned to be useful in many commercial Internet services; however, integrating the current Internet into Vehicular Networks (VNs) presents a new set of challenges. In particular, to provide rapid IP handover in the VNs, simply applying PFMIPv6 to VNs may not improve handover performance since PFMIPv6 handover restricts the previous Mobile Access Gateway (MAG) from forwarding the packets until it receives an HAck/HI from the next MAG, even though the vehicle may have already arrived at the next MAG. We also note that PFMIPv6 does not consider the impact of geographic restriction on vehicular mobility. Therefore, in this paper, we propose an enhanced PFMIPv6 (ePFMIPv6) for VNs in which the serving MAG pre-establishes a tunnel with candidate next MAGs for next MAG so that the packets can be immediately forwarded to the next MAG once the serving MAG is indicated the vehicle’s handover by the serving road side unit. To evaluate the performance of the proposed protocol, we derive analytical expressions for packet loss, latency and signaling overhead caused by ePFMIPv6 and PFMIPv6 handovers. Our analytical study is verified by simulation results.  相似文献   

16.
In this paper, we analyze the IPv6 handover over wireless LANs. Mobile IPv6 is designed to manage mobile nodes movements between wireless IPv6 networks. Nevertheless, a mobile node cannot receive IP packets on its new point of attachment until the handover completes. Therefore, a number of extensions to Mobile IPv6 have been proposed to reduce the handover latency and the number of lost packets. We focus on Fast Mobile IPv6 which is an extension of Mobile IPv6 that allows the use of L2 triggers to anticipate the handover. We compare the handover latency in four specific cases: basic Mobile IPv6, the forwarding method of Mobile IPv6, the Anticipated method, and the Tunnel-Based Handover. The results of the handover latency are calculated with the L2 properties of IEEE 802.11b. In particular, we take into account the L2 handover for different configurations of the wireless network.  相似文献   

17.
Proxy Mobile IPv6 (PMIPv6), a network-based mobility management protocol, supports multi-homing, inter-technology handover, and flow mobility, with the help of a host’s virtual interface (VI). Several single virtual interface (SVI) schemes have been proposed to support these functions. In the SVI schemes, the link-layer identifier (LL-ID) should be swapped while the host is processing neighbor discovery (ND) after inter-technology handover or flow mobility. That is, a host must replace the LL-ID of a VI contained in a neighbor advertisement with the LL-ID of a physical interface (PI) related to a real connection. Such LL-ID swapping cannot be executed under secure neighbor discovery, and it causes ND processing delay and high overhead to check all outgoing packets. In this paper, we propose a multiple virtual interfaces scheme to solve the problem related to the LL-ID swapping, and to provide good support to the inter-technology handover. In the proposed scheme, there are the same numbers of VIs as the PIs between the data link layer and the network layer of a host. Since each VI maintains its own neighbor cache, the proposed scheme does not require LL-ID swapping, so that it can keep the standard ND process. We explain the basic operation of PMIPv6 inter-technology handover under the proposed scheme and, through NS-3 simulation, evaluate the performance of the proposed scheme in terms of ND process delay and inter-technology handover latency.  相似文献   

18.
The ability of offloading selected IP data traffic from 3G to WLAN access networks is considered a key feature in the upcoming 3GPP specifications, being the main goal to alleviate data congestion in cellular networks while delivering a positive user experience. Lately, the 3GPP has adopted solutions that enable mobility of IP-based wireless devices relocating mobility functions from the terminal to the network. To this end, the IETF has standardized Proxy Mobile IPv6 (PMIPv6), a protocol capable to hide often complex mobility procedures from the mobile devices. This paper, in line with the mentioned offload requirement, further extends PMIPv6 to support dynamic IP flow mobility management across access wireless networks according to operator policies. Considering energy consumption as a critical aspect for hand-held devices and smart-phones, we assess the feasibility of the proposed solution and provide an experimental analysis showing the cost (in terms of energy consumption) of simultaneous packet transmission/reception using multiple network interfaces. The end-to-end system design has been implemented and validated by means of an experimental network setup.  相似文献   

19.
Broadband wireless technologies will soon become an integral part of daily life. In this paper we present the design rationale of a context-aware mobility management architecture for seamless handover in heterogeneous networks. Our proposal is a new cross-layer and interactive approach to seamless handover of users and their services. We present a simple though effective analytical model in typical deployment scenarios in heterogeneous networks with the use of the IEEE Media Independent Handover services. Such analytical model is used to evaluate the resulting handover delay when deploying common mobility protocols in our architecture, such as Mobile IP, Hierarchical MIP, and Proxy MIP.  相似文献   

20.
This paper presents comparative results on Hierarchical Mobile IPv6 and Proxy Mobile IPv6. The two mobility support protocols have similar hierarchical mobility management architectures but there are, however, clearly different perceptions: Hierarchical Mobile IPv6 has specific properties of a host-based mobility support protocol, whereas Proxy Mobile IPv6 is based on a network-based mobility support protocol. Thus, it is important to reveal their mobility characteristics and performance impact factors. In this paper, a cost based evaluation model is developed that evaluates the location update cost, the packet delivery cost, and the wireless power consumption cost based on the protocol operations used. Then, the numerical results are presented in where impacts of the various system parameters are evaluated. The results demonstrate that Proxy Mobile IPv6 always outperforms Hierarchical Mobile IPv6 due to its ability to avoid the mobility signaling sent by the mobile host, and its reduced tunneling overhead during communications with other nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号