首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
DNA topoisomerases I and II are the two major nuclear enzymes capable of relieving torsional strain in DNA. Of these enzymes, topoisomerase I plays the dominant role in relieving torsional strain during chromatin assembly in cell extracts from oocytes, eggs, and early embryos. We tested if the topoisomerases are used differentially during chromatin assembly in Saccharomyces cerevisiae by a combined biochemical and pharmacological approach. As measured by plasmid supercoiling, nucleosome deposition is severely impaired in assembly extracts from a yeast mutant with no topoisomerase I and a temperature-sensitive form of topoisomerase II (strain top1-top2). Expression of wild-type topoisomerase II in strain top1-top2 fully restored assembly-driven supercoiling, and assembly was equally efficient in extracts from strains expressing either topoisomerase I or II alone. Supercoiling in top1-top2 extract was rescued by adding back either purified topoisomerase I or II. Using the topoisomerase II poison VP-16, we show that topoisomerase II activity during chromatin assembly is the same in the presence and absence of topoisomerase I. We conclude that both topoisomerases I and II can provide the DNA relaxation activity required for efficient chromatin assembly in mitotically cycling yeast cells.  相似文献   

4.
5.
6.
7.
In vivo, nucleosomes are formed rapidly on newly synthesized DNA after polymerase passage. Previously, a protein complex from human cells, termed chromatin assembly factor-I (CAF-I), was isolated that assembles nucleosomes preferentially onto SV40 DNA templates that undergo replication in vitro. Using a similar assay, we now report the purification of CAF-I from the budding yeast Saccharomyces cerevisiae. Amino acid sequence data from purified yeast CAF-I led to identification of the genes encoding each subunit in the yeast genome data base. The CAC1 and CAC2 (chromatin assembly complex) genes encode proteins similar to the p150 and p60 subunits of human CAF-I, respectively. The gene encoding the p50 subunit of yeast CAF-I (CAC3) is similar to the human p48 CAF-I subunit and was identified previously as MSI1, a member of a highly conserved subfamily of WD repeat proteins implicated in histone function in several organisms. Thus, CAF-I has been conserved functionally and structurally from yeast to human cells. Genes encoding the CAF-I subunits (collectively referred to as CAC genes) are not essential for cell viability. However, deletion of any CAC gene causes an increase in sensitivity to ultraviolet radiation, without significantly increasing sensitivity to gamma rays. This is consistent with previous biochemical data demonstrating the ability of CAF-I to assemble nucleosomes on templates undergoing nucleotide excision repair. Deletion of CAC genes also strongly reduces silencing of genes adjacent to telomeric DNA; the CAC1 gene is identical to RLF2 (Rap1p localization factor-2), a gene required for the normal distribution of the telomere-binding Rap1p protein within the nucleus. Together, these data suggest that CAF-I plays a role in generating chromatin structures in vivo.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
DNA superhelical tension, an important feature of genomic organization, is known to affect the interactions of intercalating molecules with DNA. However, the effect of torsional tension on nonintercalative DNA-binding chemicals has received less attention. We demonstrate here that the enediyne calicheamicin gamma1I, a strand-breaking agent specific to the minor groove, causes approximately 50% more damage in negatively supercoiled plasmid DNA than in DNA with positive superhelicity. Furthermore, we show that the decrease in damage in positively supercoiled DNA is controlled at the level of thiol activation of the drug. Our results suggest that supercoiling may affect both the activity of nonintercalating genotoxins in vivo and the accessibility of glutathione and other small physiologic molecules to DNA-bound chemicals or reactions occurring in the grooves of DNA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号