首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper implemented a new skin lesion detection method based on the genetic algorithm (GA) for optimizing the neutrosophic set (NS) operation to reduce the indeterminacy on the dermoscopy images. Then, k-means clustering is applied to segment the skin lesion regions. Therefore, the proposed method is called optimized neutrosophic k-means (ONKM). On the training images set, an initial value of \(\alpha \) in the \(\alpha \)-mean operation of the NS is used with the GA to determine the optimized \(\alpha \) value. The Jaccard index is used as the fitness function during the optimization process. The GA found the optimal \(\alpha \) in the \(\alpha \)-mean operation as \(\alpha _{\mathrm{optimal}} =0.0014\) in the NS, which achieved the best performance using five fold cross-validation. Afterward, the dermoscopy images are transformed into the neutrosophic domain via three memberships, namely true, indeterminate, and false, using \(\alpha _{\mathrm{optimal}}\). The proposed ONKM method is carried out to segment the dermoscopy images. Different random subsets of 50 images from the ISIC 2016 challenge dataset are used from the training dataset during the fivefold cross-validation to train the proposed system and determine \(\alpha _{\mathrm{optimal}}\). Several evaluation metrics, namely the Dice coefficient, specificity, sensitivity, and accuracy, are measured for performance evaluation of the test images using the proposed ONKM method with \(\alpha _{\mathrm{optimal}} =0.0014\) compared to the k-means, and the \(\gamma \)k-means methods. The results depicted the dominance of the ONKM method with \(99.29\pm 1.61\%\) average accuracy compared with k-means and \(\gamma \)k-means methods.  相似文献   

2.
The r-round (iterated) Even–Mansour cipher (also known as key-alternating cipher) defines a block cipher from r fixed public n-bit permutations \(P_1,\ldots ,P_r\) as follows: Given a sequence of n-bit round keys \(k_0,\ldots ,k_r\), an n-bit plaintext x is encrypted by xoring round key \(k_0\), applying permutation \(P_1\), xoring round key \(k_1\), etc. The (strong) pseudorandomness of this construction in the random permutation model (i.e., when the permutations \(P_1,\ldots ,P_r\) are public random permutation oracles that the adversary can query in a black-box way) was studied in a number of recent papers, culminating with the work of Chen and Steinberger (EUROCRYPT 2014), who proved that the r-round Even–Mansour cipher is indistinguishable from a truly random permutation up to \(\mathcal {O}(2^{\frac{rn}{r+1}})\) queries of any adaptive adversary (which is an optimal security bound since it matches a simple distinguishing attack). All results in this entire line of work share the common restriction that they only hold under the assumption that the round keys \(k_0,\ldots ,k_r\) and the permutations \(P_1,\ldots ,P_r\) are independent. In particular, for two rounds, the current state of knowledge is that the block cipher \(E(x)=k_2\oplus P_2(k_1\oplus P_1(k_0\oplus x))\) is provably secure up to \(\mathcal {O}(2^{2n/3})\) queries of the adversary, when \(k_0\), \(k_1\), and \(k_2\) are three independent n-bit keys, and \(P_1\) and \(P_2\) are two independent random n-bit permutations. In this paper, we ask whether one can obtain a similar bound for the two-round Even–Mansour cipher from just one n-bit key and one n-bit permutation. Our answer is positive: When the three n-bit round keys \(k_0\), \(k_1\), and \(k_2\) are adequately derived from an n-bit master key k, and the same permutation P is used in place of \(P_1\) and \(P_2\), we prove a qualitatively similar \(\widetilde{\mathcal {O}}(2^{2n/3})\) security bound (in the random permutation model). To the best of our knowledge, this is the first “beyond the birthday bound” security result for AES-like ciphers that does not assume independent round keys.  相似文献   

3.
The structure and kinetic properties of a hollow single-layer fullerene-structured Si60 cluster are treated theoretically by molecular dynamic simulation in the temperature range 10 K ≤ T ≤ 1760 K. Five series of calculations are conducted, with simulation of several media inside and outside the Si60 cluster, specifically, vacuum and interior spaces filled with 30 and 60 hydrogen atoms with and without the exterior hydrogen environment of 60 atoms. The average radius of the silicon cluster, \(\bar R_{cl} \) increases with increasing temperature, reaching a maximal value in the absence of hydrogen near the cluster and taking smaller values if the unpaired bonds of silicon atoms are fully compensated with hydrogen atoms located inside the cluster and there is no exterior hydrogen “coat.” An increase in temperature yields a decrease in the average number of Si-Si bonds per atom in the silicon cluster, \(\bar n_b \), and in the average length \(\bar L_b \) of the Si-Si bonds. The higher stability of the quantities \(\bar n_b \) and \(\bar L_b \) in the entire temperature region under consideration is characteristic of the Si60 fullerene surrounded by a hydrogen “coat” and containing 60 hydrogen atoms in the interior space. Such clusters have smaller self-diffusion coefficients at high temperatures. The fullerene stabilized with hydrogen is stable to the formation of linear atomic chains up to the temperatures 270–280 K.  相似文献   

4.
A fractor is a simple fractional-order system. Its transfer function is \(1/Fs^{\alpha }\); the coefficient, F, is called the fractance, and \(\alpha \) is called the exponent of the fractor. This paper presents how a fractor can be realized, using RC ladder circuit, meeting the predefined specifications on both F and \(\alpha \). Besides, commonly reported fractors have \(\alpha \) between 0 and 1. So, their constant phase angles (CPA) are always restricted between \(0^{\circ }\) and \(-90^{\circ }\). This work has employed GIC topology to realize fractors from any of the four quadrants, which means fractors with \(\alpha \) between \(-\)2 and +2. Hence, one can achieve any desired CPA between \(+180^{\circ }\) and \(-180^{\circ }\). The paper also exhibits how these GIC parameters can be used to tune the fractance of emulated fractors in real time, thus realizing dynamic fractors. In this work, a number of fractors are developed as per proposed technique, their impedance characteristics are studied, and fractance values are tuned experimentally.  相似文献   

5.
It is considered methods of spectral identification of hydroacoustic signals based on comparison of \(\bar x_\alpha \) (f) dependences on spectrum frequency f of quantiles \(\bar x_\alpha \) (f) of hydroacoustic signals Fourier (Hartley) spectrum. The identification results are robust to abnormal interferences in channels of hydroacousic signals spreading, registration and reproduction.  相似文献   

6.
Göös et al. (ITCS, 2015) have recently introduced the notion of Zero-Information Arthur–Merlin Protocols (\(\mathsf {ZAM}\)). In this model, which can be viewed as a private version of the standard Arthur–Merlin communication complexity game, Alice and Bob are holding a pair of inputs x and y, respectively, and Merlin, the prover, attempts to convince them that some public function f evaluates to 1 on (xy). In addition to standard completeness and soundness, Göös et al., require a “zero-knowledge” property which asserts that on each yes-input, the distribution of Merlin’s proof leaks no information about the inputs (xy) to an external observer. In this paper, we relate this new notion to the well-studied model of Private Simultaneous Messages (\(\mathsf {PSM}\)) that was originally suggested by Feige et al. (STOC, 1994). Roughly speaking, we show that the randomness complexity of \(\mathsf {ZAM}\) corresponds to the communication complexity of \(\mathsf {PSM}\) and that the communication complexity of \(\mathsf {ZAM}\) corresponds to the randomness complexity of \(\mathsf {PSM}\). This relation works in both directions where different variants of \(\mathsf {PSM}\) are being used. As a secondary contribution, we reveal new connections between different variants of \(\mathsf {PSM} \) protocols which we believe to be of independent interest. Our results give rise to better \(\mathsf {ZAM}\) protocols based on existing \(\mathsf {PSM}\) protocols, and to better protocols for conditional disclosure of secrets (a variant of \(\mathsf {PSM}\)) from existing \(\mathsf {ZAM} \)s.  相似文献   

7.
A formal general solution to the homogeneous Maxwell equations is obtained in the form of a matrix asymptotic series for the case of a quasi-plane-layered medium in which complex tensors \(\hat \varepsilon \) and \(\hat \mu \) arbitrarily depend on Cartesian coordinate zand slowly change in the planes z=const. A recurrent system of matrix first-order linear ordinary differential equations for the coefficients of this series is derived. In contrast to the method of geometric optics, this solution, even in the first approximation, takes into account the wave polarization and has a wider range of application.  相似文献   

8.
Recently, the design of group sparse regularization has drawn much attention in group sparse signal recovery problem. Two of the most popular group sparsity-inducing regularization models are \(\ell _{1,2}\) and \(\ell _{1,\infty }\) regularization. Nevertheless, they do not promote the intra-group sparsity. For example, Huang and Zhang (Ann Stat 38:1978–2004, 2010) claimed that the \(\ell _{1,2}\) regularization is superior to the \(\ell _1\) regularization only for strongly group sparse signals. This means the sparsity of intra-group is useless for \(\ell _{1,2}\) regularization. Our experiments show that recovering signals with intra-group sparse needs more measurements than those without, by the \(\ell _{1,\infty }\) regularization. In this paper, we propose a novel group sparsity-inducing regularization defined as a mixture of the \(\ell _{1/2}\) norm and the \(\ell _{1}\) norm, referred to as \(\ell _{1/2,1}\) regularization, which can overcome these shortcomings of \(\ell _{1,2}\) and \(\ell _{1,\infty }\) regularization. We define a new null space property for \(\ell _{1/2,1}\) regularization and apply it to establish a recoverability theory for both intra-group and inter-group sparse signals. In addition, we introduce an iteratively reweighted algorithm to solve this model and analyze its convergence. Comprehensive experiments on simulated data show that the proposed \(\ell _{1/2,1}\) regularization is superior to \(\ell _{1,2}\) and \(\ell _{1,\infty }\) regularization.  相似文献   

9.
In this paper, we investigate the impact of the transmitter finite extinction ratio and the receiver carrier recovery phase offset on the error performance of two optically preamplified hybrid M-ary pulse position modulation (PPM) systems with coherent detection. The first system, referred to as PB-mPPM, combines polarization division multiplexing (PDM) with binary phase-shift keying and M-ary PPM, and the other system, referred to as PQ-mPPM, combines PDM with quadrature phase-shift keying and M-ary PPM. We provide new expressions for the probability of bit error for PB-mPPM and PQ-mPPM under finite extinction ratios and phase offset. The extinction ratio study indicates that the coherent systems PB-mPPM and PQ-mPPM outperform the direct-detection ones. It also shows that at \(P_b=10^{-9}\) PB-mPPM has a slight advantage over PQ-mPPM. For example, for a symbol size \(M=16\) and extinction ratio \(r=30\) dB, PB-mPPM requires 0.6 dB less SNR per bit than PQ-mPPM to achieve \(P_b=10^{-9}\). This investigation demonstrates that PB-mPPM is less complex and less sensitive to the variations of the offset angle \(\theta \) than PQ-mPPM. For instance, for \(M=16\), \(r=30\) dB, and \(\theta =10^{\circ }\) PB-mPPM requires 1.6 dB less than PQ-mPPM to achieve \(P_b=10^{-9}\). However, PB-mPPM enhanced robustness to phase offset comes at the expense of a reduced bandwidth efficiency when compared to PQ-mPPM. For example, for \(M=2\) its bandwidth efficiency is 60 % that of PQ-mPPM and \(\approx 86\,\%\) for \(M=1024\). For these reasons, PB-mPPM can be considered a reasonable design trade-off for M-ary PPM systems.  相似文献   

10.
A temperature dependence of the optical energy gap E g (T) for the CdSxSe1?x quantum dots synthesized in a borosilicate glass matrix was investigated in the range of 4.2–500 K. It was demonstrated that this dependence reproduced the dependence E g (T) for bulk crystals and is described by the Varshni formula for \(\bar r > a_B \) over the entire temperature range. Here, \(\bar r\) is the average dot radius, and aB is the Bohr radius for the exciton in a bulk crystal. With the transition to quantum dots with \(\bar r > a_B \), a decrease in the thermal coefficient of the band gap and a deviation from the Varshni dependence were observed in the temperature range of 4.2–100 K. The specific features observed are explainable by a decrease in the resulting macroscopic potential of the electron-phonon interaction and by modification of the vibration spectrum for dots as their volume decreases.  相似文献   

11.
The as-grown molecular beam epitaxy (MBE) (211)B HgCdTe surface has variable surface topography, which is primarily dependent on substrate temperature and substrate/epilayer mismatch. Nano-ripple formation and cross-hatch patterning are the predominant structural features observed. Nano-ripples preferentially form parallel to the \( [\bar {1}11] \) and are from 0 Å to 100 Å in height with a wavelength between 0.1 μm and 0.8 μm. Cross-hatch patterns result from slip dislocations in the three {111} planes intersecting the (211) growth surface. The cross-hatch step height is 4 ± 1 Å (limited data set). This indicates that only a bi-layer slip (Hg/Cd + Te) in the {111} slip plane occurs. For the deposition of MBE (211)B HgCdTe/CdTe/Si, the reorientation of multiple nano-ripples coalesced into “packets” forms cross-hatch patterns. The as-grown MBE (211)B CdTe/Si surface is highly variable but displays nano-ripples and no cross-hatch pattern. Three types of defects were observed by atomic force microscopy (AFM): needle, void/hillock, and voids.  相似文献   

12.
In this article, the acceleration attained in gain recovery dynamics of travelling-wave-type semiconductor optical amplifier (SOA) at the expense of structural optimization is illustrated via numerical simulations. A pump–probe scheme has been utilized in order to study the outcomes of optimization of SOA operational and structural parameters on its effective gain recovery time (\({\tau _\mathrm{e}}\)). A set of optimized SOA parameters are formulated from gain recovery dynamics studies after keeping practical implementation considerations in vision. Further, the impacts of altering SOA structural and operational parameters such as injection current (I), amplifier length (L), active region width (w), active region thickness (t) and optical confinement factor (\({\varGamma } \)) on gain recovery time improvement achieved are further investigated on the performance of a cross-gain modulation (XGM) in SOA-based all-optical half-subtracter in terms of two designated performance metrics: quality factor (Q-factor) and extinction ratio (ER). It has been revealed that reduced gain recovery time-optimized SOAs-based all-optical half-subtracter arranged in a co-propagating manner exhibits improved Q-factor and ER (dB) performance at high bit rates of operation (\(\le \)80 Gbps).  相似文献   

13.
In this work, two-channel perfect reconstruction quadrature mirror filter (QMF) bank has been proposed based on the prototype filter using windowing method. A novel window function based on logarithmic function along with the spline function is utilized for the design of prototype filter. The proposed window has a variable parameter ‘\(\alpha \)’, which varies the peak side lobe level and rate of fall-off side lobe level which in turn affects the peak reconstruction error (PRE) and amplitude distortion (\(e_{am}\)) of the QMF bank . The transition width of the prototype is controlled by the spline function using the parameter ‘\(\mu \)’. The perfect reconstruction condition is satisfied by setting the cutoff frequency (\(\omega _{c}\)) of the prototype low-pass filter at ‘\(\pi /2\)’. The performance of the proposed design method has been evaluated in terms of mean square error in the pass band, mean square error in the stop band, first side lobe attenuation (\(A_{1}\)), peak reconstruction error (PRE) and amplitude error (\(e_{am}\)) for different values of ‘\(\alpha \)’ and ‘\(\mu \)’. The results are provided and compared with the existing methods.  相似文献   

14.
We give a detailed account of the use of \(\mathbb {Q}\)-curve reductions to construct elliptic curves over \(\mathbb {F}_{p^2}\) with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Like GLS (which is a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves and thus finding secure group orders when \(p\) is fixed for efficient implementation. Unlike GLS, we also offer the possibility of constructing twist-secure curves. We construct several one-parameter families of elliptic curves over \(\mathbb {F}_{p^2}\) equipped with efficient endomorphisms for every \(p > 3\), and exhibit examples of twist-secure curves over \(\mathbb {F}_{p^2}\) for the efficient Mersenne prime \(p = 2^{127}-1\).  相似文献   

15.
Total variation (TV) denoising is a commonly used method for recovering 1-D signal or 2-D image from additive white Gaussian noise observation. In this paper, we define the Moreau enhanced function of \(L_1\) norm as \({\varPhi }_\alpha (x)\) and introduce the minmax-concave TV (MCTV) in the form of \({\varPhi }_\alpha (Dx)\), where D is the finite difference operator. We present that MCTV approaches \(\Vert Dx\Vert _0\) if the non-convexity parameter \(\alpha \) is chosen properly and apply it to denoising problem. MCTV can strongly induce the signal sparsity in gradient domain, and moreover, its form allows us to develop corresponding fast optimization algorithms. We also prove that although this regularization term is non-convex, the cost function can maintain convexity by specifying \(\alpha \) in a proper range. Experimental results demonstrate the effectiveness of MCTV for both 1-D signal and 2-D image denoising.  相似文献   

16.
In typical applications of homomorphic encryption, the first step consists for Alice of encrypting some plaintext m under Bob’s public key \(\mathsf {pk}\) and of sending the ciphertext \(c = \mathsf {HE}_{\mathsf {pk}}(m)\) to some third-party evaluator Charlie. This paper specifically considers that first step, i.e., the problem of transmitting c as efficiently as possible from Alice to Charlie. As others suggested before, a form of compression is achieved using hybrid encryption. Given a symmetric encryption scheme \(\mathsf {E}\), Alice picks a random key k and sends a much smaller ciphertext \(c' = (\mathsf {HE}_{\mathsf {pk}}(k), \mathsf {E}_k(m))\) that Charlie decompresses homomorphically into the original c using a decryption circuit \(\mathcal {C}_{{\mathsf {E}^{-1}}}\). In this paper, we revisit that paradigm in light of its concrete implementation constraints, in particular \(\mathsf {E}\) is chosen to be an additive IV-based stream cipher. We investigate the performances offered in this context by Trivium, which belongs to the eSTREAM portfolio, and we also propose a variant with 128-bit security: Kreyvium. We show that Trivium, whose security has been firmly established for over a decade, and the new variant Kreyvium has excellent performance. We also describe a second construction, based on exponentiation in binary fields, which is impractical but sets the lowest depth record to \(8\) for \(128\)-bit security.  相似文献   

17.
Three fractional-order transfer functions are analyzed for differences in realizing (\(1+\alpha \)) order lowpass filters approximating a traditional Butterworth magnitude response. These transfer functions are realized by replacing traditional capacitors with fractional-order capacitors (\(Z=1/s^{\alpha }C\) where \(0\le \alpha \le 1\)) in biquadratic filter topologies. This analysis examines the differences in least squares error, stability, \(-\)3 dB frequency, higher-order implementations, and parameter sensitivity to determine the most suitable (\(1+\alpha \)) order transfer function for the approximated Butterworth magnitude responses. Each fractional-order transfer function for \((1+\alpha )=1.5\) is realized using a Tow–Thomas biquad a verified using SPICE simulations.  相似文献   

18.
We have developed a preparation method for precisely controlling the Na content x of a γ-Na0.7CoO2 precursor by a halogen oxidation technique in the range 0.50 ≤ x ≤ 0.70. The Na content of the precursor was reduced in a concentration-controlled I2-CH3CN solution. The magnetic susceptibility of γ-Na x CoO2 shows Curie–Weiss (CW)-type paramagnetism (x ≈ 0.70) or Pauli-type paramagnetism (x ≈ 0.50). The boundary of the CW and Pauli paramagnetic phases was identified at x ≈ 0.61. The content and temperature for a disorder–order transition from the γ phase to a \(\sqrt{7}a_0 \times \sqrt{7}a_0\) superstructure were accurately elucidated by differential scanning calorimetry (DSC) measurement. A phase transition for the 0.52 ≤ x ≤ 0.54 sample was observed at 250 K by DSC measurements. The heat absorption of the 0.52 ≤ x ≤ 0.54 samples was of the same order of magnitude as that of the transition from the γ phase to the \(\sqrt{7}a_0 \times \sqrt{7}a_0\) phase.  相似文献   

19.
The performance of two-way relay (TWR)-assisted mixed radio-frequency/free-space optical (RF/FSO) system is evaluated in this letter. The proposed system employs decode-and-forward relaying phenomena where the relay is basically an interfacing node between two source nodes \(S_1\) and \(S_2\), where \(S_1\) supports RF signal, while \(S_2\) supports FSO signal. The TWR-assisted system helps in achieving spectral efficiency by managing bidirectional communication in three time slots, thus maximizing the achievable rate of the network. The RF link is subjected to generalized \(\eta -\mu \) distribution, and the optical channel is affected by path loss, pointing errors and gamma–gamma (gg) distributed atmospheric turbulence. The novel expressions for the probability density function and cumulative distribution function of the equivalent end-to-end signal-to-noise ratio (SNR) are derived. Capitalizing on these derived statistics of end-to-end SNR, the expressions of outage probability and the bit-error rate for different binary modulations and M-ary modulations are provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号