共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Michelson interferometer for precision angle measurement 总被引:15,自引:0,他引:15
An angle-measuring technique based on an optical interferometer is reported. The technique exploits a Michelson interferometric configuration in which a right-angle prism and a glass strip are introduced into a probe beam. Simultaneous rotation of both components along an axis results in an optical path difference between the reference and the probe beams. In a second arrangement two right-angle prisms and glass strips are introduced into two beams of a Michelson interferometer. The prisms and the strips are rotated simultaneously to introduce an optical path difference between the two beams. In our arrangement, optimization of various parameters makes the net optical path difference between the two beams approximately linear for a rotation as great as +/-20 degrees . Results are simulated that show an improvement of 2-3 orders of magnitude in error and nonlinearity compared with a previously reported technique. 相似文献
4.
A laser gauge for noncontacting, production on-line measurements of the diameter of filament, fiber, and wire samples made from transparent and opaque materials within ±3 m error limits in the range of diameters up to 2 mm is described briefly.Translated from Izmeritel'naya Tekhnika, No. 9, pp. 53–55, September, 1994. 相似文献
5.
With conventional optical interferometry flying-height testing, a stationary measurement beam and a two-axis moving stage are used to measure slider-disk spacing at different points on the slider. Pitch angle or roll angle is calculated on the basis of the measurement results. We report on a scanning differential-heterodyne interferometer, which measures the continuous flying-height variation along the edge of a slider with two continuously scanning laser beams. Pitch angle or roll angle can be obtained directly from the scanning measurement. The system can also measure points individually to obtain the absolute flying height at different locations on the slider. Experiments were performed to demonstrate the concept of scanning measurement. The flying-height variation along the slider edge was measured by continuous scan and by point-to-point moving. The measurement results from continuous scan coincided with those of conventional methods. 相似文献
6.
玻璃小球直径的图像测量方法 总被引:2,自引:0,他引:2
提出了一种基于数字图像处理技术的微小玻璃球直径的测量方法。该方法采用Sobel算子计算目标的梯度图像,取阈值对其进行二值化处理;根据边缘成像特点,通过数学规划法计算小球边缘的初始位置;在此基础上,采用空间矩亚像素定位算法对目标边缘进行精确定位;通过拟合这些边缘点,即可求得目标直径。实验结果表明,该方法对二值化阈值的依赖性小,抗噪声能力强:在一定的范围内,阈值的不同对该算法重复精度的影响小于0.06个像素;由于采用交互方式选定处理区域,算法的计算速度较快,完成一次计算的时间不到1S。 相似文献
7.
Light beam scanning using a dispersive element and wavelength tuning is coupled with fiber-optic interferometry to realize a new surface measurement instrument. The instrument is capable of measuring nanoscale surface structures and form deviations. It features active vibration compensation and a small optical probe size that may be placed remotely from the main apparatus. Active vibration compensation is provided by the multiplexing of two interferometers with near common paths. Closed loop control of a mirror mounted on a piezoelectric transducer is used to keep the path length stable. Experiments were carried out to deduce the effectiveness of the vibration compensation and the ability to carry out a real measurement in the face of large environmental disturbance. 相似文献
8.
Three-channel imaging fabry-perot interferometer for measurement of mid-latitude airglow 总被引:1,自引:0,他引:1
We have developed a three-channel imaging Fabry-Perot interferometer with which to measure atmospheric wind and temperature in the mesosphere and thermosphere through nocturnal airglow emissions. The interferometer measures two-dimensional wind and temperature for wavelengths of 630.0 nm (OI, altitude, 200-300 km), 557.7 nm (OI, 96 km), and 839.9 nm (OH, 86 km) simultaneously with a time resolution of 20 min, using three cooled CCD detectors with liquid-N(2) Dewars. Because we found that the CCD sensor moves as a result of changes in the level of liquid N(2) in the Dewars, the cooling system has been replaced by thermoelectric coolers. The fringe drift that is due to changes in temperature of the etalon is monitored with a frequency-stabilized He-Ne laser. We also describe a data-reduction scheme for calculating wind and temperature from the observed fringes. The system is fully automated and has been in operation since June 1999 at the Shigaraki Observatory (34.8N, 136.1E), Shiga, Japan. 相似文献
9.
A previously proposed double sinusoidal phase-modulating (DSPM) laser-diode interferometer measures distances larger than a half-wavelength by detecting modulation depth. Although it requires a vibrating mirror to provide the second modulation to the interference signal, such vibrations naturally affect measurement accuracy. We propose a static-type DSPM laser-diode interferometer that uses no mechanical modulation. Our experimental results indicate a measurement error of +/- 1.6 microm. 相似文献
10.
We report an optical-scanning, dual-fiber, extrinsic Fabry-Perot interferometer system for absolute measurement of microdisplacement. The system involves two air-gapped Fabry-Perot cavities, formed by fiber end faces, functioning as sensing and reference elements. Taking the scanning wavelength as an interconverter to compare the gap length of the sensing head with the reference-cavity length yields the absolute measurement of the sensing-cavity length. The measurement is independent of the wavelength-scanning accuracy, and the reference-cavity length can be self-calibrated simply by one's changing the sensing-head length by an accurate value. 相似文献
11.
Interferometers are key elements in radial velocity (RV) experiments in astronomy observations, and accurate calibration of the group delay of an interferometer is required for high precision measurements. A novel field-compensated white light scanning Michelson interferometer is introduced as an interferometer calibration tool. The optical path difference (OPD) scanning was achieved by translating a compensation prism, such that even if the light source were in low spatial coherence, the interference stays spatially phase coherent over a large interferometer scanning range. In the wavelength region of 500-560 nm, a multimode fiber-coupled LED was used as the light source, and high optical efficiency was essential in elevating the signal-to-noise ratio of the interferogram signal. The achromatic OPD scanning required a one-time calibration, and two methods using dual-laser wavelength references and an iodine absorption spectrum reference were employed and cross-verified. In an experiment measuring the group delay of a fixed Michelson interferometer, Fourier analysis was employed to process the interferogram data. The group delay was determined at an accuracy of 1×10(-5), and the phase angle precision was typically 2.5×10(-6) over the wide wavelength region. 相似文献
12.
The path imbalance (PI) of the two-arm fiber-optic interferometric sensor is a substantial parameter; a precise value of millimeters is required. Currently the precision reflectometry and the millimeter optical time-domain reflectometry are used to measure the tiny optical path difference, but the performances of these measurements are limited from the length and the resolution of the PI. We propose a new method accomplished by interferometer to accurately measure millimeters to within a few decimeters of the PI. 相似文献
13.
In addition to a conventional phase a the interference signal of a sinusoidal-wavelength-scanning interferometer has a phase-modulation amplitude Zb that is proportional to the optical path difference L and amplitude b of the wavelength scan. L and b are controlled by a double feedback system so that the phase alpha and the amplitude Zb are kept at 3pi/2 and pi, respectively. The voltage applied to a device that displaces a reference mirror to change the optical path difference becomes a ruler with scales smaller than a wavelength. Voltage applied to a device that determines the amplitude of the wavelength scan becomes a ruler marking every wavelength. These two rulers enable one to measure an absolute distance longer than a wavelength in real time. 相似文献
14.
Sinusoidal wavelength-scanning interferometer with a superluminescent diode for step-profile measurement 总被引:1,自引:0,他引:1
In sinusoidal phase-modulating interferometry an optical path length (OPD) larger than a wavelength is measured by detection of sinusoidal phase-modulation amplitude Z(b) of the interference signal that is produced by sinusoidal scanning of the wavelength of a light source. A light source with a large scanning width of wavelength is created by use of a superluminescent laser diode for the error in the measured value obtained by Z(b) to be smaller than half of the central wavelength. In this situation the measured value can be combined with a fractional value of the OPD obtained from the conventional phase of the interference signal. A sinusoidal wavelength-scanning interferometer with the light source measures an OPD over a few tens of micrometers with a high accuracy of a few nanometers. 相似文献
15.
Superluminescent diode interferometer using sinusoidal phase modulation for step-profile measurement 总被引:1,自引:0,他引:1
We propose an interferometer in which the relationship between the degree of coherence (DCH) and the optical path difference (OPD) is utilized for determining an OPD longer than a wavelength. A superluminescent diode is employed as the source of the interferometer, and sinusoidal phase-modulating interferometry is used to detect the DCH and the phase of the interference signal. The combination of the OPD determined from the DCH and the phase of an interference signal enables us to measure an OPD longer than a wavelength with a high accuracy of a few nanometers. Experimental results show clearly the usefulness of the interferometer for a step-profile measurement. 相似文献
16.
Ahn TJ Moon S Kim S Oh K Kim DY Kobelke J Schuster K Kirchhof J 《Applied optics》2006,45(32):8238-8243
A new bandwidth measurement technique for a multimode optical fiber (MMF) using a frequency-domain intermodal interferometer is proposed. We have demonstrated that the relative modal delay (RMD) of a MMF can be obtained easily and accurately based on an optical frequency-domain reflectometry (OFDR) technique by using an intermodal interference signal among the excited modes of a MMF. As an example, a photonic crystal fiber with a few modes is prepared and its RMD is measured by using our proposed measurement technique. Measurement results are compared with those from a previously reported frequency-domain method. We have also measured the RMD of a commercial MMF as a practical application and compared our result with the one obtained from a well-known time-domain differential mode delay measurement technique. 相似文献
17.
18.
We investigated a high-precision optical method for measuring the thickness of biological samples regardless of their transparency. The method is based on the precise measurement of optical path length difference of the end surfaces of objects, using a dual-arm axial-scanning low-coherence interferometer. This removes any consideration of the shape, thickness, or transparency of testing objects when performing the measurement. Scanning the reference simplifies the measurement setup, resulting in unambiguous measurement. Using a 1310?nm wavelength superluminescent diode, with a 65?nm bandwidth, the measurement accuracy was as high as 11.6?μm. We tested the method by measuring the thickness of both transparent samples and nontransparent soft biological tissues. 相似文献
19.
Nanometer measurement with a dual fabry-perot interferometer 总被引:1,自引:0,他引:1
On the basis of analyzing sinusoidal phase-modulating Fabry-Perot interferometry, a method, believed to be novel, is proposed for achieving nanometer measurement accuracy by measuring the time interval between equal amplitudes of the two elementary frequency signals of the transmitted intensities of a dual Fabry-Perot interferometer. A nanometer measurement system based on the method was designed and tested. The experimental results show that the displacement resolution of the system is 0.32 nm at a 1-kHz modulating signal. 相似文献