首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear low density polyethylene (LLDPE) and low density polyethylene (LDPE) differ significantly in their branching types and branching distributions. For a comprehensive analysis, preparative temperature rising elution fractionation and/or preparative molar mass fractionation are used to fractionate typical LLDPE and LDPE bulk resins into narrowly distributed fractions. The chain structures of the bulk resins and their fractions are further analysed using SEC, crystallization analysis fractionation, DSC and high‐temperature HPLC to provide detailed information on short chain branching in LLDPE and long chain branching in LDPE. For LDPE it is shown that the multiple fractionation approach is a powerful source of sample libraries that may have similar molar masses and different branching structures or alternatively similar branching but different molar masses. The analysis of these library samples by thermal analysis provides a much deeper insight into the molecular heterogeneity of the samples compared to bulk sample analysis. © 2018 Society of Chemical Industry  相似文献   

2.
Solution fractionation for four different polyethylenes including high‐density polyethylene (HDPE), low‐density polyethylene (LDPE), linear low‐density polyethylene (LLDPE), and very low‐density polyethylene (VLDPE) are conducted by stepwise controlling both the temperature and the amount of precipitant. The size exclusion chromatograph (SEC) measurements indicate that solution fractionation technique can successfully separate all the polyethylene samples in accordance with their molecular weight and molecular‐weight distributions. In addition, infrared spectroscopy analysis shows that the degree of short‐chain branching for each fraction of each polyethylene varies with the fraction's molecular weight. The effect of the molecular weight with different short‐chain branching on each fraction's crystallinity represents the characteristics of chain components for different polyethylenes. The crystallinities of HDPE, LLDPE, and LDPE decrease with the increase in their molecular weights; however, for VLDPE, its crystallinity increases with the increase in the molecular weight. The research revealed that the degree of short‐chain branching, together with the molecular weight, can greatly affect the crystallinity of polyethylene. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2542–2549, 2004  相似文献   

3.
The electrical‐resistivity/temperature behaviors of low‐density polyethylene (LDPE)/carbon black (CB) composites irradiated with 60Co γ rays were studied. The experimental results showed that the irradiated composites could be separated into insoluble crosslinking networks with CB (gel) and soluble components (sol) by solvent‐extraction techniques. When the sol of an irradiated LDPE/CB composite was extracted, the electrical conductivity of the system increased. The positive‐temperature‐coefficient (PTC) and negative‐temperature‐coefficient (NTC) intensities of the gels of the irradiated composites became extremely small and independent of the radiation dose. The sols and gels of the irradiated LDPE/CB composites, which had different thermal behaviors, played important roles in the appearances of the PTC and NTC effects. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 700–704, 2005  相似文献   

4.
Linear low‐density polyethylene (LLDPE), based on butene‐1 or hexene‐1, was irradiated with γ‐rays under vacuum or in the presence of air. The study focused on the influence of the dose rate and the γ‐dose on the thermal properties of LLDPE. Differential scanning calorimetry, thermogravimetric analysis (TGA), and TGA/FTIR techniques were used to address the thermal behavior as a result of γ‐irradiation. During this irradiation, competition between crosslinking and scission reactions, subsequent to oxidation reactions, occurred in the polymeric material, which strongly depends on the experimental conditions. A decrease of the crystallinity for γ‐irradiated samples was observed in particular for samples irradiated under vacuum. This observation may be explained by increased hindrance of segment mobility due to crosslinking reactions that prevent crystal growth. TGA investigations revealed an enhancement of the thermal stability for samples irradiated under vacuum but not for those irradiated in air. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2790–2795, 2006  相似文献   

5.
Radiation effects of low‐density polyethylene/ethylene‐vinyl acetate copolymer (LDPE/EVA) blends were discussed. EVA content in the LDPE/EVA blends was an enhancement effect on radiation crosslinking of LDPE/EVA blends, and the highest radiation crosslinking was obtained when the EVA content was reached at 30% when irradiated by γ‐ray in air. The phenomenon was discussed with the compatibility, morphology, and thermal properties of LDPE/EVA blends and found that the enhanced radiation crosslinking of the LDPE/EVA blends was proportional to the good compatibility, the increasing degree of the amorphous region's content of the LDPE/EVA blends, and the vinyl acetate content of EVA. We also found that the vinyl acetate of EVA in the blends is easily oxidized by γ‐ray irradiation in air. The possible radiation crosslinking and degradation mechanism of LDPE/EVA blends was discussed quantitatively with a novel method “step‐analysis” process of irradiated LDPE/EVA blends in the thermal gravimetric analysis (TGA) technique. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1296–1302, 2002  相似文献   

6.
The crystallization of a series of low‐density polyethylene (LDPE)‐ and linear low‐density polyethylene (LLDPE)‐rich blends was examined using differential scanning calorimetry (DSC). DSC analysis after continuous slow cooling showed a broadening of the LLDPE melt peak and subsequent increase in the area of a second lower‐temperature peak with increasing concentration of LDPE. Melt endotherms following stepwise crystallization (thermal fractionation) detailed the effect of the addition of LDPE to LLDPE, showing a nonlinear broadening in the melting distribution of lamellae, across the temperature range 80–140°C, with increasing concentration of LDPE. An increase in the population of crystallites melting in the region between 110 and 120°C, a region where as a pure component LDPE does not melt, was observed. A decrease in the crystallite population over the temperature range where LDPE exhibits its primary melting peaks (90–110°C) was noted, indicating that a proportion of the lamellae in this temperature range (attributed to either LDPE or LLDPE) were shifted to a higher melt temperature. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1009–1016, 2000  相似文献   

7.
Linear low density polyethylene (LLDPE) exhibits a complex molecular structure that is characterized by molar mass and chemical composition distributions. Both molecular parameters complementarily influence the final application properties. Typically, the molecular structure of commercial polyolefins is characterized by a set of technical parameters including the melt flow index, the crystallization and melting temperatures and the comonomer content as obtained using Fourier transform infrared or NMR spectroscopy. LLDPEs with high comonomer contents are typically regarded as plastomers or elastomers. Due to their low crystallinities, characterization of these materials using crystallization‐based analytical techniques is of limited use since the majority of the material is rather amorphous. Such materials need specific alternative analytical methods that may be based on molar mass and/or chemical composition fractionation. Here it is shown that for a comprehensive analysis of LLDPEs with similar bulk properties, preparative molar mass fractionation (pMMF) and advanced analysis of the fractions are required. The pMMF fractions are comprehensively analyzed using size exclusion chromatography, differential scanning calorimetry and high‐temperature high‐performance liquid chromatography to provide detailed information on molar mass and copolymer composition. Correlated information of these molecular parameters is obtained by comprehensive two‐dimensional liquid chromatography. © 2019 Society of Chemical Industry  相似文献   

8.
A detailed study was performed on unirradiated low‐ and high‐density polyethylene (LDPE and HDPE) films as well as irradiated films with different types of radiation such as 60Co γ rays, thermal and fast neutrons, and electron beam irradiation. The structural changes of PE films were characterized by Fourier transform infrared (FTIR), Fourier transform Raman (FT–Raman), and ultraviolet (UV) spectrometric techniques. The results showed significant radiation degradation, crosslinking, and changes in the crystalline and amorphous regions. The influence of γ‐radiation on the structure of PE was found to be more prominent compared to that of thermal neutrons and electron beam irradiation. However, LDPE film was found to be more sensitive to these types of radiation in accordance with HDPE because of its lesser degree of crystallinity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 179–200, 2000  相似文献   

9.
A series of low‐density polyethylene (LDPE) blends with different amounts of ethylene–vinyl–acetate (EVA) was prepared and irradiated with 10 MeV electron beam in the range of 0–250 kGy at room temperature in air. EVA was used as a compatibilizer and softener in four different amounts: 5, 10, 20, and 30 wt %, based on polyethylene (PE). The crosslinking of the samples was studied on the basis of gel‐content measurements as well as some thermal and mechanical properties of the specimens. The results indicated that the LDPE and LDPE–EVA blends could be crosslinked by a high‐energy electron beam, of which their thermal and mechanical properties changed effectively, however, because of EVA content of the polymer; the blends were more sensitive to lower doses of radiation. These studies were carried out to obtain a suitable compound for heat‐shrinkable tubes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1049–1052, 2004  相似文献   

10.
Infrared spectroscopy is a powerful technique for studying the microstructure and determining the short‐chain branch distribution of polyethylene. In this work, the types and amounts of short‐chain branches in low‐density polyethylene were investigated with Fourier transform infrared spectroscopy, and a new and simple method for the determination of butyl short branches was discovered. The amount of each unsaturated species in low‐density polyethylene was also determined with Fourier transform infrared after the bromination of samples. Furthermore, the resin was fractionated by preparative temperature rising elution fractionation, and the branch distribution and melting endotherm of each fraction were analyzed with attenuated total reflectance/Fourier transform infrared and differential scanning calorimetry. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Multifunctional monomers, m‐xylylenedimaleimide, p‐phenylenedimaleimide, m‐phenylenedimaleimide, and p‐phenylenedinadimide, all of which have maleimide groups, were synthesized to increase thermal and radiation stabilities. The synthesized multifunctional monomers showed good compatibility with low‐density polyethylene (LDPE). Mixtures of LDPE and these multifunctional monomers were irradiated with γ‐rays from a Co‐60 source at room temperature in a nitrogen atmosphere. The absorbed dose ranged from 0 to 160 KGy. Among these multifunctional monomers, m‐xylylenedimaleimide was the best in gel fraction enhancement. Crosslinked LDPE with m‐xylylenedimaleimide displayed a higher modulus than that of crosslinked LDPE with triallyl cyanurate. For the elongation property, LDPE with m‐xylylenedimaleimide as a multifunctional monomer showed better results than that with commercial multifunctional monomers such as triallyl cyanurate (TAC) and trimethylol propane triacrylate (TMPTA). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2339–2345, 2003  相似文献   

12.
Blends of low‐density polyethylene (LDPE) and poly[ethylene‐co‐(vinyl acetate)] (PEVA), crosslinked by electron‐beam (EB) radiation, formed separate crystalline lattices with a homogeneous amorphous phase. The crystallinity of the EB‐exposed samples slightly decreased, as verified by a slight reduction in the densities and melting heats and temperatures of the samples. The results obtained from both gel content and hot set tests showed that the degree of crosslinking in the amorphous regions was dependent on the dose and blend composition. The molecular weights between the crosslinks, measured from creep data, showed that an increasing PEVA content resulted in tighter network structures, thus supporting the idea that the crosslinking density at a given irradiation dose depends on the amorphous portions of the polymers. Addition of trimethylolpropane trimethacrylate as a radiation sensitizer enhanced the gel content of the neat polyethylene significantly, while the addition of an antioxidant showed the reverse effect. A significant improvement in the tensile strength of the neat PEVA samples was obtained upon EB radiation up to 210 kGy. The irradiated LDPE/PEVA blends showed improved tensile strength and elongation at break when compared to LDPE. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was irradiated by 60Co γ‐rays (doses of 50, 100 and 200 kGy) under vacuum. The thermal analysis of control and irradiated PHBV, under vacuum was carried out by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile properties of control and irradiated PHBV were examined by using an Instron tensile testing machine. In the thermal degradation of control and irradiated PHBV, a one‐step weight loss was observed. The derivative thermogravimetric curves of control and irradiated PHBV confirmed only one weight‐loss step change. The onset degradation temperature (To) and the temperature of maximum weight‐loss rate (Tp) of control and irradiated PHBV were in line with the heating rate (°C min?1). To and TP of PHBV decreased with increasing radiation dose at the same heating rate. The DSC results showed that 60Co γ‐radiation significantly affected the thermal properties of PHBV. With increasing radiation dose, the melting temperature (Tm) of PHBV shifted to a lower value, due to the decrease in crystal size. The tensile strength and fracture strain of the irradiated PHBV decreased, hence indicating an increased brittleness. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
The molecular chain heterogeneity of commercial linear low‐density polyethylene (LLDPE) was investigated by cross‐fractionation of temperature rising elution fractionation (TREF) and successive self‐nucleation/annealing (SSA) thermal fractionation by use of DSC. The results indicate that the linear relationships between crystallinity or melting temperature and the elution temperature are confirmed by TREF fractions. Intermolecular heterogeneity exists in the original LLDPE, whereas there is less intermolecular heterogeneity in the TREF fractions. After SSA thermal fractionation, the multiple endothermic peaks for both LLDPE and their TREF fractions are mainly attributed to the heterogeneities of ethylene sequence length (ESL) and lamellar thickness. The statistical terms, including weighted mean L w, arithmetic mean L n, and broad index L w/L n, were introduced to evaluate the heterogeneities of ESL and lamellar thickness of polyethylene. The difference of broadness index indicates that TREF fractions of LLDPE have less inter‐ and intramolecular heterogeneities of both ESL and lamellar thickness than those of the original LLDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1710–1718, 2004  相似文献   

15.
Carbon fiber (CF) filled low‐density polyethylene (LDPE) composites were prepared by the conventional melt‐mixing method. The distribution of CF in the composite was studied by wide‐angle X‐ray diffraction (WAXD) and scanning electron microscope (SEM) observations. A phenomenological model was proposed to illustrate the resistivity‐temperature behavior of CF‐filled semicrystalline composites. The effects of the content and aspect ratio of CF on the positive temperature coefficient (PTC) and the room temperature resistivity were elucidated. A balance between the PTC intensity and the room‐temperature resistivity can be achieved by using a mixture of CFs with low and high aspect ratios. The negative temperature coefficient (NTC) phenomenon can be effectively eliminated by crosslinking under γ‐ray radiation, and the crosslinked composite exhibits a higher PTC intensity and PTC transition temperature than the noncrosslinked counterpart. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1222–1228, 2004  相似文献   

16.
Thermal fractionations performed using differential scanning calorimetry (DSC) to characterize the heterogeneities in molecular structures of low‐density polyethylene (LDPE), silane‐grafted LDPE (G‐LDPE), and silane‐grafted water‐crosslinked LDPE with gel fractions of 30 and 70 wt % are reported. In regular DSC analyses, LDPE, G‐LDPE, and the low gel fraction of crosslinked samples (30 wt %) give one broad endothermic peak at ~110 °C, whereas the high gel fraction of crosslinked samples (70 wt %) give overlapped multiple endothermic peaks in a much broader temperature range. After thermally fractionated in the range 60–145 °C, LDPE, G‐LDPE, and the low gel fraction samples give five to six endothermic peaks in the low‐temperature range, whereas the high gel fraction samples give nine peaks, with three additional peaks appearing in the high‐temperature range. These multiple peaks correspond to fractions of different molecular structures, with the additional peaks for the high gel fraction samples corresponding to the fraction of molecular segments with low or no branching. This fraction of molecular segments is increasingly extruded out of the gel region with increasing gel fraction by crosslinking and leads to an enhancement of crystallization of the sample. This crystallization enhancement behavior is also demonstrated by the X‐ray diffraction data and polarized optical micrographs. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 591–599, 2001  相似文献   

17.
Poly(tetrafluoroethylene) (PTFE) scraps were recovered as a filler material for low‐density polyethylene (LDPE) after they were degraded by Co‐60 γ‐rays under atmospheric conditions to make small‐size powder. The powder PTFE, which was called secondary PTFE (2°‐PTFE), was melt mixed with LDPE and then extruded to obtain 200 µm films. The mechanical and thermal properties and also the morphology of the fractured surface of these 2°‐PTFE–filled LDPE were studied. It was found that the addition of 2°‐PTFE resulted in thermofilm property of LDPE but it slightly decreased the thermal oxidative temperature of LDPE. The tensile strength and ultimate elongation of LDPE were found to decrease with the addition of 2°‐PTFE. However, when it is compared to the addition of virgin PTFE into LDPE, 2°‐PTFE shows better mechanical properties due to the presence of oxy groups which are capable of interacting with the main matrix. A further improvement in mechanical properties was achieved by silane coupling agent treatment of 2°‐PTFE. Silane coupling agents were found to enhance the interfacial adhesion between 2°‐PTFE and LDPE. The study on the fractured surfaces by scanning electron microscope revealed this adhesion between these two polymers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 866–876, 1999  相似文献   

18.
BACKGROUND: Preparative fractionation techniques are currently used in order to obtain large amounts of polyethylene fractions. Preparative successive solution fractionation (SSF) and temperature rising elution fractionation (TREF) are compared as regards obtaining, at a multi‐gram scale, low‐dispersity fractions of high‐density polyethylene (HDPE). The operative separation mechanisms during a SSF of a broad HDPE, which are not yet totally elucidated, are also studied in this work. RESULTS: SSF and TREF approaches lead to the separation of HDPE macromolecules according to their molar masses. If very homogeneous fractions (dispersities from 1.1 to 1.3) are isolated in TREF at the lowest elution temperature, the collected mass is too low. At higher elution temperatures, the fractions have too broad a molar mass distribution (dispersities from 2.7 to 3.7). With the SSF procedure, dispersities are not as low as for the first TREF fractions. But, the relative weight fraction is better distributed between the different extraction temperatures. The molar mass distribution exhibits a dispersity of around 1.9. CONCLUSION: The SSF method is the most suitable way to obtain large gram amounts of low‐dispersity (ca 2) HDPE fractions over a wide molar mass range. Complementary gram‐scale rheological characterization is thus possible enabling a better comprehension of the SSF mechanism. Liquid–liquid demixing is the main mechanism in SSF, but its relative importance depends on polymer characteristics and solvent quality. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
Research has been devoted to the desalination of saline water to fresh water suitable for human demands because of the shortage of water in some countries. Therefore, in this study, reverse‐osmosis membranes were prepared via the γ‐radiation graft copolymerization of acrylic acid onto high‐density and low‐density polyethylene. The factors that could affect the grafting process, such as the solvent type, monomer and inhibitor concentration, and irradiation dose, were investigated to determine the optimum conditions for radiation grafting. The polyethylene grafted acrylic acid copolymers (PAAc‐g‐PE) graft copolymer was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and mechanical, rheological, and thermal property testing to illustrate the possibility of practical use in water desalination. The prepared grafted membranes showed significant results in the reverse‐osmosis desalination method with underground saline water. The factors affecting the desalination of water, such as the water flux, operation time, and grafting percentage, were studied. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45410.  相似文献   

20.
The thermal and mechanical properties of low‐density polyethylene (LDPE), poly(ε‐caprolactone) (PCL), and their blends were evaluated. Differential scanning calorimetry showed that increasing the PCL content of the blend did not change the LDPE melting temperature, but reduced the crystallinity by up to 16.8%. This behavior was related to interactions between the PCL chains and the crystalline phase of LDPE. Tensile strength and elongation at break values for the blends were lower than those for the pure polymers, which suggested an incompatibility between the polymers. The values for Young's modulus under tensile increased when PCL was added to LDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3909–3914, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号