首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The frying stability of a regular sunflower oil (RSFO) was compared with that of a high-oleic acid sunflower oil (HOSFO). The rate of FFA formation was greater for HOSFO than RSFO during 72 h of frying. The content of tocopherols was much higher in RSFO and their degradation was markedly slower than that observed for HOSFO. The formation of total polar compounds, however, was similar for both oils despite the dramatic differences in FA composition. This study further confirms the limitations in predicting frying stability based solely on the FA composition and is consistent with earlier studies conducted in our laboratory.  相似文献   

5.
6.
A study was carried out to improve the quality of used frying oils and to assess the feasibility of recycling using a membrane process. Experiments were conducted with used frying oils in a flat membrane batch cell using polymeric membranes. The total polar materials and oxidation products, which normally lead to the deterioration of frying oils, were reduced by 32 to 42% and 14 to 48% during NTGS‐2200 membrane processing. Color and viscosity of the used frying oil, which are the main criteria for discontinuing use in many restaurants and homes, were improved to the extent of fresh oil. The membrane processing was effective for improving the overall quality. However, reductions of phosphatides and color compounds, presumably melanoidines, may be responsible for a deterioration of oil stability. The permeate flux values were in the range of 63 to 121 g/(m2 h). The permeate flux was found to be inversely proportional to the viscosity of the oil. The stability of the processed oil as well as the permeate flux must be improved for commercial application.  相似文献   

7.
The evolution of pressure drop, drainage rate, saturation, and efficiency of combined philic, and phobic oil mist filters in real‐time are examined. The experiments used four different filter configurations, with a combination of oleophobic and oleophilic fibrous filter media, and one oleophilic only reference. The effect of separating filter materials of differing wettability, with a mesh, was also explored. It was found that inclusion of a mesh between layers promoted increased drainage rates and resulted in a significantly lower pressure drop across the filter. The overall mass‐based filtration efficiency was also slightly higher for the configurations containing the mesh. Conversely, re‐entrainment of droplets from the rear face of the filter was only observed in filter configurations without the central mesh. Filters with oleophobic initial layers did not display a classical “depth filtration” pressure drop curve. The oleophobic media was found to possess lower steady‐state saturation than oleophilic media. Additionally, the steady‐state saturation of the oleophilic filter media, when placed at the rear of the filter, was lower when the central mesh was present. The saturation values were compared with recently published theory. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2976–2984, 2014  相似文献   

8.
9.
The deep‐frying process, normally carried out at 140–200 °C, is a very complex system due to the combination of heat and mass transfer between food and frying medium. The system becomes more complicated as the frying operation proceeds, because the composition of the food being fried and the frying medium is changing continuously due to the progressive deterioration of the frying medium. Apart from a variety of chemical reactions occurring, several changes take place in the frying food, such as gelatinisation of starch, denaturation of protein, and decrease of moisture. These changes bring about swelling of the product, formation of a crusty layer, and the appearance of a golden colour, good texture and taste. The precise control of the fryer enables these physical and chemical changes in the frying of food to convert it into a desirable finished product. This article discusses various types of reactions occurring in the food frying operation, possible mechanisms, a new realistic method – OSET index for measuring heat stability of frying oils – and the protective behaviour of substances that enhance the frying stability of oils.  相似文献   

10.
Natural oils are the attractive biobased alternatives for petroleum derived chemicals in the production of polymers. A series of new biodegradable polymers based on epoxidized camelina oil was synthesized and investigated. The thermal, mechanical, swelling properties, hydrolysis, biodegradation, and bioresistance of the camelina oil‐based polymers with bisphosphonate crosslinks were studied and compared with those of the analogous polymers based on epoxidized linseed oil. The dependence of the polymer properties on the density of crosslinks was observed. The obtained results showed that the properties of the camelina oil‐based polymers are comparable with those of the linseed oil‐based polymers and that camelina oil is a promising starting material for the synthesis of polymers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40683.  相似文献   

11.
In order to improve the flexibility properties of conventional epoxy resin, two novel soybean oil–based curing agents were synthesized. The curing agent obtained from the reaction between epoxy soybean oil and ethylene diamine was named EEDA, and another curing agent derived from epoxy soybean oil and isophorone diamine was named EIPDA. Several techniques were used to systematically investigate the effects of the structure and content of the two curing agents on the properties of the cured products. The Fourier transform infrared analysis demonstrated that epoxy resin reacted with soybean oil–based curing agents. The differential scanning calorimetry analysis showed that the curing process between diglycidyl ether of bisphenol‐A (DGEBA) and soybean oil–based curing agents only had an exothermic peak. Thermogravimetric analysis indicated that the cured DGEBA/EIPDA system was more stable than the DGEBA/EEDA system below 300 °C. Mechanical tests and Shore D hardness tests suggested that excessive EEDA greatly enhanced the toughness of cured products because of the introduction of aliphatic chains.© 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44754.  相似文献   

12.
A diol‐based refined, bleached, and deodorized (RBD) palm kernel oil polyol was prepared. It was found that the polyurethane foam produced only gives a good compressive strength property at a 45 kg/m3 molded density. The combination of sorbitol into the polyol system resulted in a better dimensional stability and improved thermal conductivity as well as enhanced compressive strength. These were obtained by increasing the functionality of the polyol (functionality of 4.5) through introduction of a high molecular weight and branching polyhidric compound. Direct polycondensation and transesterification methods were used for the syntheses. The hydroxyl value, TLC, and FTIR were used to study the completion of the reaction. A comparative study of the mechanical properties and morphological behavior was carried out with a diol‐based polyol. From the water‐blown molded foam (zero ODP) with a density of about 44.2 kg/m3 and a closed‐cell content of 93%, a compressive strength of 222 kPa and a dimensional stability of 0.09, 0.10, and 0.12% at the length, width, and thickness of the foam, respectively, conditioned at ?15°C for 24 h, were obtained. The thermal conductivity improved to an initial value of 0.00198 W/mK, tested at 0°C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 384–389, 2001  相似文献   

13.
14.
Cellulose fibers with modified properties have been prepared from cellulose solutions in N‐methylmorpholine‐N‐oxide (NMMO). Poly(ethylene oxide) as a hydrophilic modifier and polyethylene as a hydrophobic modifier were added to the spinning solution. Based on microscope examination and measurements of such properties of fibers as porosity, moisture absorption, water retention, and tensile strength, structural changes as well as physical and mechanical properties of the resultant fibers depending on the amount of modifier added to the spinning solution were analyzed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 907–916, 2002  相似文献   

15.
16.
In this study, acrylated epoxidized flaxseed oil (AEFO) resin is synthesized from flaxseed oil, and flax fiber reinforced AEFO biocomposites is produced via a vacuum‐assisted resin transfer molding technique. Different amounts of flax fiber and styrene are added to the resin to improve its mechanical and physical properties. Both flax fiber and styrene improve the mechanical properties of these biocomposites, but the flexural strength decreases with an increase in styrene content. The mass increase during water absorption testing is less than 1.5% (w/w) for all of the AEFO‐based biocomposites. The density of the AEFO resin is 1.166 g/cm3, which increases to 1.191 g/cm3 when reinforced with 10% (w/w) flax fiber. The flax fiber reinforced AEFO‐based biocomposites have a maximum tensile strength of 31.4 ± 1.2 MPa and Young's modulus of 520 ± 31 MPa. These biocomposites also have a maximum flexural strength of 64.5 ± 2.3 MPa and a flexural modulus of 2.98 ± 0.12 GPa. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41807.  相似文献   

17.
18.
This article describes the application of ionic liquid 1‐decyl‐3‐methylimidazolium tetrafluoroborate in the preparation of polypropylene‐silica composites. The sol‐gel technology was used to prepare xerogel silica‐ionic liquid hybrid S1 , which was obtained as a free flowing powder of aggregated spherical particles. Ionic liquid free silica S2 was obtained by extraction and calcination of S1 . Melt blending of isotactic polypropylene with S1 and S2 afforded the composites C1 (with ionic liquid) and C2 (without ionic liquid), respectively. The presence of ionic liquid on the S1 silica surface promoted significantly improved silica dispersion in the polymer matrix and prevented compression of the silica particles. Furthermore, the crystallization temperature of composite C1 was significantly higher, which indicated that silica‐ionic liquid filler S1 acted as nucleating agent. The resistance to thermal decomposition of both composites was increased, but this was higher in the presence of ionic liquid. These results show that liquid salts can function as coupling agents and compatibalizers for the preparation of polymeric composites with differentiated properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Novel biobased polyurethanes were synthesized from rubber seed oil (RSO), a renewable resource. The RSO monoglyceride, together with xylene and hexamethylene diisocyanate (HMDI), was employed to synthesize the desired urethane‐based prepolymer with isocyanate (NCO)‐terminated end groups followed by curing. The degrees of crosslinking of the polyurethane after curing were assessed with their swelling behavior. The properties of the resulting polyurethanes were found to be dependent on the type of diisocyanate and their molar ratios to the RSO monoglyceride. The network structures, which were assessed through swelling studies, showed that networks based on HMDI with an NCO/OH ratio of 1.50 were better crosslinked than with those toluene diisocyanate. The thermal properties of the samples analyzed by thermogravimetric analysis showed two and three decomposition stages in aliphatic‐ and aromatic‐based RSO polyurethanes, respectively. The highest stability with initial decomposition temperature (253°C) and percentage residual at 500°C (11.4%) was achieved with an aliphatic‐based RSO polyurethane. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Argan oil is well known for its nutraceutical properties. Its specific fatty acid composition and antioxidant content contribute to the stability of the oil and to its dietetic and culinary values. There is an increasing interest to use argan oil in cosmetics, pharmaceutics, and food products. However, the formulation of highly stable emulsions with prolonged shelf life is needed. In this study, argan oil‐in‐water (O/W) emulsions were prepared using microchannel (MC) emulsification process, stabilized by different non‐ionic emulsifiers. The effects of processing temperature on droplet size and size distribution were studied. Physical stability of argan O/W emulsions was also investigated by accelerated stability testing and during storage at room temperature (25 ± 2°C). Highly monodisperse argan O/W emulsions were produced at temperatures up to 70°C. The obtained emulsions were physically stable for several months at room temperature. Furthermore, emulsifier type, concentration, and temperature were the major determinants influencing the droplet size and size distribution. The results indicated that a suitable emulsifier should be selected by experimentation, since the interfacial tension and hydrophilic–lipophilic balance values were not suitable to predict the emulsifying efficiency. Practical applications: MC emulsification produces efficiently monodisperse droplets at wide range of temperatures. The findings of this work may be of great interest for both scientific and industrial purposes since highly stable and monodisperse argan oil‐in‐water emulsions were produced which can be incorporated into food, cosmetic, or pharmaceutical formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号