首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Each node in a wireless ad hoc network runs on a local energy source that has a limited energy life span. Thus, energy conservation is a critical issue in such networks. In addition, it is in general desirable to construct routes with low hop counts as a route with a high hop count is more likely to be unstable (because the probability that intermediate nodes will move away is higher). In this paper, we address these two issues concurrently with energy conservation as the primary objective and low hop count as the secondary objective. One way of addressing the energy conservation issue is to construct routes that maximize the minimum residual battery capacity available among all nodes in each route. A broadcast tree with all routes satisfying this condition is referred to as a maximum residual energy resource broadcast tree. A maximum residual energy resource broadcast tree with the least diameter is referred to as a minimum diameter maximum residual energy resource broadcast tree and the problem of constructing such a tree is referred to as the minimum diameter maximum residual energy resource broadcast routing problem (MDMRERBRP). We propose an algorithm for MDMRERBRP and prove that MDMRERBRP is optimally solvable in polynomial time using the proposed algorithm. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
VANETs路由协议的研究进展   总被引:1,自引:0,他引:1  
于海宁  张宏莉 《电子学报》2011,39(12):2868-2879
车辆自组织网络是传统自组织网络派生出的一个分支,其与应用场景高度相关.传统路由协议不能有效的适用于车辆自组织网络,因此,针对车辆自组织网络提出了许多新的路由协议.首先在总结车辆自组织网络的特性后,分别介绍了单播路由、广播路由和地域性多播路由的概念,然后着重分析和总结了近年来具有代表性的路由协议的核心路由机制及其优缺点,...  相似文献   

3.
Estimating Hop Counts in Position Based Routing Schemes for Ad Hoc Networks   总被引:2,自引:0,他引:2  
The recent availability of small, inexpensive low power GPS receivers and techniques for finding relative coordinates based on signal strengths, and the need for the design of power efficient and scalable networks, provided justification for applying position based routing methods in ad hoc networks. A number of such algorithms were developed recently. They are all based on three greedy schemes, applied when the forwarding node is able to advance the message toward destination. In this paper we show that the hop count, that is the number of transmissions needed to route a message from a source node to a destination node can be estimated reasonably accurately (in random unit graphs with uniform traffic), with less than 10%, 5% and 7% error for directional (compass), distance (greedy) and progress (MFR) based schemes, respectively, for 100 nodes with average degrees between 5 and 14, without experiments. Our results are derived from statistical observations regarding expected position of forwarding neighbor.  相似文献   

4.
The main purposes of this article are to relieve broadcast problem, to immunize to some prerequisites, and to reduce the number of transmitted control packets. Broadcasting control packets network-wide is the most direct and common method for finding the required destination node in ad hoc mobile wireless networks; however, this causes a lot of waste of wireless bandwidth. To remedy the problem, routing protocols demanding some prerequisites are proposed; nonetheless, hardly can they be used if these prerequisites are missed or become stale. To efficiently reduce the number of transmitted control packets, our routing protocol partitions the network into interlaced gray districts and white districts by the aid of GPS and inhibits an intermediate node residing in a white district from re-transmitting the received control packets. However, a mobile node residing in a gray district is responsible for re-transmitting them till they reach the destination node. Our routing protocol does not demand any prerequisite except the use of GPS. Each mobile node can always obtain its own location information; furthermore, the information may neither be missed nor become stale. Our routing protocol is easy to be implemented, saves precious wireless bandwidth, and reduces almost half a number of control packets as compared with pure flooding routing protocols.Ying-Kwei Ho received the B.S. degree and M.S. degree in applied mathematics and in electrical engineering from the Chung-Cheng Institute of Technology in 1987 and 1993 respectively and the Ph.D. degree in computer engineering and science from the Yuan-Ze University, Taiwan, R.O.C. He joined the Army of Taiwan, R.O.C. in 1987 and worked as a software engineer. From 1993 to 1997, he was an instructor in the War Game Center of Armed Forces University, Taiwan, R.O.C. He is currently an assistant professor of the Department of Computer Science at Chung-Cheng Institute of Technology. His research interests include mobile computing, wireless network performance simulation and evaluation, and modeling and simulation.Ru-Sheng Liu received the B.S. degree in electrical engineering from the National Cheng-Kung University, Taiwan, in 1972 and the M.S. and Ph.D. degrees in computer science from the University of Texas at Dallas, Richardson, Texas, in 1981 and1985, respectively. He is currently an associate professor in the Department of Computer Engineering and Science at Yuan-Ze University, Chungli, Taiwan. His research interests are in the areas of mobile computing, internet technology, and computer algorithms.  相似文献   

5.
A mobile ad hoc network (or manet) is a group of mobile, wireless nodes which cooperatively form a network independent of any fixed infrastructure or centralized administration. In particular, a manet has no base stations: a node communicates directly with nodes within wireless range and indirectly with all other nodes using a dynamically-computed, multi-hop route via the other nodes of the manet.Simulation and experimental results are combined to show that energy and bandwidth are substantively different metrics and that resource utilization in manet routing protocols is not fully addressed by bandwidth-centric analysis. This report presents a model for evaluating the energy consumption behavior of a mobile ad hoc network. The model was used to examine the energy consumption of two well-known manet routing protocols. Energy-aware performance analysis is shown to provide new insights into costly protocol behaviors and suggests opportunities for improvement at the protocol and link layers.  相似文献   

6.
    
Topology control plays an important role in the design of wireless ad hoc and sensor networks and has demonstrated its high capability in constructing networks with desirable characteristics such as sparser connectivity, lower transmission power, and smaller node degree. However, the enforcement of a topology control algorithm in a network may degrade the energy‐draining balancing capability of the network and thus reduce the network operational lifetime. For this reason, it is important to take into account energy efficiency in the design of a topology control algorithm in order to achieve prolonged network lifetime. In this paper, we propose a localized energy‐efficient topology control algorithm for wireless ad hoc and sensor networks with power control capability in network nodes. To achieve prolonged network lifetime, we introduce a concept called energy criticality avoidance and propose an energy criticality avoidance strategy in topology control and energy‐efficient routing. Through theoretical analysis and simulation results, we prove that the proposed topology control algorithm can maintain the global network connectivity with low complexity and can significantly prolong the lifetime of a multi‐hop wireless network as compared with existing topology control algorithms with little additional protocol overhead. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
    
Virtual multi‐input‐multi‐output (vMIMO) technology is becoming a promising way to improve the energy efficiency of wireless networks. Previous research always builds up the vMIMO‐based routing on the fixed structure such as clusters, and the MIMO mode is omitted in most cases. So, they cannot fully explore the advantage of vMIMO in routing. In this paper, we study a general routing scheme in which no fixed structure is required, and any communication mode of vMIMO is allowed for sake of the energy efficiency. We define two vMIMO‐based routing problems aiming to energy‐minimization and lifetime‐optimization. The first problem can be solved by our distributed energy‐minimum vMIMO‐based algorithm. The algorithm constructs the virtual cooperative graph, and applies the shortest path method on the virtual cooperative graph to solve this problem. The second problem is non‐deterministic polynomial‐time hard, and we design the distributed lifetime‐oriented vMIMO‐based algorithm, which is based on the modified Bellman‐Ford method. It can reach approximation ratio of four. The simulations show that our algorithms can work well in many situations. For example, distributed lifetime‐oriented vMIMO‐based algorithm can prolong the lifetime about 20.2% in dense topologies compared with the cooperative routing algorithm on average. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In all-wireless networks, minimizing energy consumption is crucial as in most cases the nodes are battery-operated. We focus on the problem of power-optimal broadcast, for which it is well known that the broadcast nature of radio transmissions can be exploited to optimize energy consumption. This problem appears to be difficult to solve [30]. We provide a formal proof of NP-completeness for the general case and give an NP-completeness result for the geometric case; in the former, the network topology is represented by a generic graph with arbitrary weights, whereas in the latter a Euclidean distance is considered. For the general case, we show that it cannot be approximated better than O(logN), where N is the total number of nodes. We then describe an approximation algorithm that achieves the O(logN) approximation ratio. We also describe a new heuristic, Embedded Wireless Multicast Advantage. We show that it compares well with other proposals and we explain how it can be distributed.  相似文献   

9.
Energy Efficient Broadcast in Wireless Ad hoc Networks with Hitch-hiking   总被引:1,自引:0,他引:1  
In this paper, we propose a novel concept called Hitch-hiking in order to reduce the energy consumption of broadcast application for wireless networks. Hitch-hiking takes advantage of the physical layer design that facilitates the combining of partial signals to obtain the complete information. The concept of combining partial signals using maximal ratio combiner [15] has been used to improve the reliability of the communication link but has never been exploited to reduce energy consumption in broadcasting over wireless ad hoc networks. We study the advantage of Hitch-hiking for the scenario when the transmission power level of nodes is fixed as well as the scenario when the nodes can adjust their power level. For both scenarios, we show that Hitch-hiking is advantageous and have proposed algorithms to construct broadcast tree with Hitch-hiking taken into consideration. For fixed transmission power case, we propose and analyze a centralized heuristic algorithm called SPWMH (Single Power Wireless Multicast with Hitch-hiking) to construct a broadcast tree with minimum forwarding nodes. For the latter case, we propose a centralized heuristic algorithm called Wireless Multicast with Hitch-hiking (WMH) to construct an energy efficient tree using Hitch-hiking and also present a distributed version of the heuristic. We also evaluate the proposed heuristics through simulation. Simulation results show that Hitch-hiking can reduce the transmission cost of broadcast by as much as 50%. Further, we propose and evaluate a protocol called Power Saving with Broadcast Tree (PSBT) that reduces energy consumption of broadcast by eliminating redundancy in receive operation. Finally, we propose an algorithm that takes advantage of both Hitch-hiking and PSBT in conserving energy. Manish Agarwal is an engineer at Microsoft, Redmond. He received his Masters degree in Electrical and Computer Engineering from University of Massachusetts, Amherst in 2004. He received his undergraduate degree from Indian Institute of Technology, Guwahati. His research interest lies in the field of mobile ad hoc networks. Lixin Gao is an associate professor of Electrical and Computer Engineering at the University of Masschusetts, Amherst. She received her Ph.D. degree in computer science from the University of Massachusettes at Amherst in 1996. Her research interests include multimedia networking and Internet routing. Between May 1999 and January 2000, she was a visiting researcher at AT&T Research Labs and DIMACS. She is an Alfred P. Sloan Fellow and received an NSF CAREER Award in 1999. She is a member of IEEE, ACM, and Sigma Xi. Joon Ho Cho received the B.S. degree (summa cum laude) in electrical engineering from Seoul National University, Seoul, Korea, in 1995 and the M.S.E.E. and Ph.D. degrees in electrical and computer engineering from Purdue University, West Lafayette, IN, in 1997 and 2001, respectively. From 2001 to 2004, he was with the University of Massachusetts at Amherst as an Assistant Professor. Since July 2004, he has been with Pohang University of Science and Technology (POSTECH), Pohang, Korea, where he is presently an Assistant Professor in the Department of Electronic and Electrical Engineering. His research interests include wideband systems, multiuser communications, adaptive signal processing, packet radio networks, and information theory. Dr. Cho is currently an Associate Editor for the IEEE Transactions on Vehicular Technology. Jie Wu is a Professor at Department of Computer Science and Engineering, Florida Atlantic University. He has published over 300 papers in various journal and conference proceedings. His research interests are in the area of mobile computing, routing protocols, fault-tolerant computing, and interconnection networks. Dr. Wu served as a program vice chair for 2000 International Conference on Parallel Processing (ICPP) and a program vice chair for 2001 IEEE International Conference on Distributed Computing Systems (ICDCS). He is a program co-chair for the IEEE 1st International Conference on Mobile Ad-hoc and Sensor Systems (MASS'04). He was a co-guest-editor of a special issue in IEEE Computer on “Ad Hoc Networks”. He also editored several special issues in Journal of Parallel and Distributing Computing (JPDC) and IEEE Transactions on Parallel and Distributed Systems (TPDS). He is the author of the text “Distributed System Design” published by the CRC press. Currently, Dr. Wu serves as an Associate Editor in IEEE Transactions on Parallel and Distributed Systems and three other international journals. Dr. Wu is a recipient of the 1996–97 and 2001–2002 Researcher of the Year Award at Florida Atlantic University. He served as an IEEE Computer Society Distinguished Visitor. Dr. Wu is a Member of ACM and a Senior Member of IEEE.  相似文献   

10.
We investigate the problem of extending the network lifetime of a single broadcast session over wireless stationary ad hoc networks where the hosts are not mobile. We define the network lifetime as the time from network initialization to the first node failure due to battery depletion. We provide through graph theoretic approaches a polynomial-time globally optimal solution, a variant of the minimum spanning tree (MST), to the problem of maximizing the static network lifetime. We make use of this solution to develop a periodic tree update strategy for effective load balancing and show that a significant gain in network lifetime over the optimal static network lifetime can be achieved. We provide extensive comparative simulation studies on parameters such as update interval and control overhead and investigate their impact on the network lifetime. The simulation results are also compared with an upper bound to the network lifetime. A preliminary version of this paper appeared in IEEE ICC 2003 [35]. This research was funded in part by NSF grant ANI-0093187, ONR award #: N00014-04-1-0479 and Collaborative Technology Alliance (CTA) from ARL under DAAD19-01-2-0011. All statements and opinions are that of the authors and do not represent any position of the U.S government Intae Kang received his B.S. degree in physics from Seoul National University, Seoul, Korea and M.S. degree in electrical engineering from the Johns Hopkins University, Baltimore, MD. He is currently working toward the Ph.D. degree in the Department of Electrical Engineering at the University of Washington, Seattle, WA. His current research interests are in the area of ad hoc and sensor networks. In particular, he is interested in energy efficient routing, topology control, medium access control, mobility management, and modeling and performance analysis of network protocols using directional/smart antennas. Radha Poovendran has been an assistant professor at the Electrical Engineering Department of the University of Washington at Seattle since September 2000. He received his Ph.D. in Electrical Engineering from the University of Maryland, College Park in 1999. His research interests are in the areas of applied cryptography for multiuser environment, wireless networking, and applications of Information Theory to security. He is a recipient of Faculty Early Career Award from the National Science Foundation (2001), Young Investigator Award from the Army Research Office (2002), Young Investigator Award from the Office of Naval Research (2004), and the 2004 Presidential Early Career Award for Scientists and Engineers, for his research contributions in the areas of wired and wireless multiuser security. He is also a co-recipient of the 2002 Outstanding Teaching as well as the Outstanding Advisor Awards from the Department of Electrical Engineering of the University of Washington.  相似文献   

11.
Channel Adaptive Shortest Path Routing for Ad Hoc Networks   总被引:6,自引:2,他引:6  
1 IntroductionAdhocnetworksareformedwithoutrequiringthepreexistinginfrastructureorcentralizedadminis tration ,incontrasttocellularnetworks.Asidefromtheoriginalmilitaryapplication ,ithasapplicationinpublicsafetyandcommercialareas,butadaptiveprotocolsarerequiredinorderforthemtodoso .Twoimportantcharacteristicsofacommunicationlinkinadhocnetworksareitsunreliabilityanditsvariability .Thelinksinsuchanetworkareunreli ablebecauseoffading ,interference,noise,andper hapsthefailureofthetransmittingorrec…  相似文献   

12.
Distributed Power Control for Energy Efficient Routing in Ad Hoc Networks   总被引:1,自引:0,他引:1  
In this paper, distributed power control is proposed as a means to improve the energy efficiency of routing algorithms in ad hoc networks. Each node in the network estimates the power necessary to reach its own neighbors, and this power estimate is used both for tuning the transmit power (thereby reducing interference and energy consumption) and as the link cost for minimum energy routing. With reference to classic routing algorithms, such as Dijkstra and Link State, as well as more recently proposed ad hoc routing schemes, such as AODV, we demonstrate by extensive simulations that in many cases of interest our scheme provides substantial transmit energy savings while introducing limited degradation in terms of throughput and delay.  相似文献   

13.
    
Recent research efforts in mobile ad hoc networks have concentrated on examining the behaviour of TCP Reno over various ad hoc routing protocols and have suggested a number of extensions to improve its performance. TCP Vegas, which takes a proactive approach to congestion avoidance, has not so far been examined as a viable alternative to TCP Reno in wireless environments and no effort has been made to analyse its performance over routing protocols for MANETs. This paper evaluates using extensive simulation experiments the performance behaviour of TCP Vegas over a proactive (destination sequenced distance vector) and two reactive (dynamic source routing and ad hoc on demand distance vector) routing protocols and compares it against that of TCP Reno. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Ad hoc networks are useful for providing communication support where no fixed infrastructure exists or the deployment of a fixed infrastructure is not economically profitable, and movement of communicating parties is allowed. Therefore, such networks are designed to operate in widely varying environments, from military networks to low-power sensor networks and other embedded systems. Frequent topology changes caused by node mobility make routing in ad hoc wireless networks a challenging problem. In this paper, we propose an optimization technique, which we refer to as GDSR, a reactive protocol that makes use of DSR scheme and the Global Positioning System (GPS). As opposed to the DSR protocol our GDSR scheme consists of propagating the route request messages only to the nodes that are further away from the query source. We discuss the algorithm, its implementation and present an extensive simulation and experimental results to study its performance. We also present a comparative study of GDSR protocol with the existing DSR protocol. Our results clearly indicate that the GDSR protocol outperforms the DSR protocol by significantly decreasing the number of route query packets thereby increasing the efficiency of the network load. Furthermore, we show that a careful GPS screening angle is an important factor in the success of GDSR ad hoc routing protocol.  相似文献   

15.
Broadcasting is a fundamental operation which is frequent in wireless ad hoc networks. A simple broadcasting mechanism, known as flooding, is to let every node retransmit the message to all its 1-hop neighbors when receiving the first copy of the message. Despite its simplicity, flooding is very inefficient and can result in high redundancy, contention, and collision. One approach to reducing the redundancy is to let each node forward the message only to a small subset of 1-hop neighbors that cover all of the node's 2-hop neighbors. In this paper we propose two practical heuristics for selecting the minimum number of forwarding neighbors: an O(nlogn) time algorithm that selects at most 6 times more forwarding neighbors than the optimum, and an O(nlog2 n) time algorithm with an improved approximation ratio of 3, where n is the number of 1- and 2-hop neighbors. The best previously known algorithm, due to Bronnimann and Goodrich [2], guarantees O(1) approximation in O(n 3 logn) time.  相似文献   

16.
Energy-Efficient Broadcast and Multicast Trees in Wireless Networks   总被引:10,自引:0,他引:10  
The wireless networking environment presents formidable challenges to the study of broadcasting and multicasting problems. In this paper we focus on the problem of multicast tree construction, and we introduce and evaluate algorithms for tree construction in infrastructureless, all-wireless applications. The performance metric used to evaluate broadcast and multicast trees is energy-efficiency. We develop the Broadcast Incremental Power (BIP) algorithm, and adapt it to multicast operation by introducing the Multicast Incremental Power (MIP) algorithm. These algorithms exploit the broadcast nature of the wireless communication environment, and address the need for energy-efficient operation. We demonstrate that our algorithms provide better performance than algorithms that have been developed for the link-based, wired environment.  相似文献   

17.
Flooding for Reliable Multicast in Multi-Hop Ad Hoc Networks   总被引:1,自引:0,他引:1  
Obraczka  Katia  Viswanath  Kumar  Tsudik  Gene 《Wireless Networks》2001,7(6):627-634
Ad hoc networks are gaining popularity as a result of advances in smaller, more versatile and powerful mobile computing devices. The distinguishing feature of these networks is the universal mobility of all hosts. This requires re-engineering of basic network services including reliable multicast communication. This paper considers the special case of highly mobile fast-moving ad hoc networks and argues that, for such networks, traditional multicast approaches are not appropriate. Flooding is suggested as a possible alternative for reliable multicast and simulation results are used to illustrate its effects. The experimental results also demonstrate a rather interesting outcome that even flooding is insufficient for reliable multicast in ad hoc networks when mobility is very high. Some alternative, more persistent variations of flooding are sketched out.  相似文献   

18.
    
In this paper, we design a localized power‐aware alternate routing (LPAR) protocol for dynamic wireless ad hoc networks. The design objective is to prolong the lifetime of wireless ad hoc networks wherein nodes can adaptively adjust their transmission power based on communication ranges. LPAR achieves this goal via two phases. In the first phase, energy draining balancing is achieved by identifying end‐to‐end paths with high residual energy. The second phase is designed to effectively reduce the power consumed for packet forwarding. This is achieved by iteratively performing adaptive localized power‐aware alternate rerouting to bypass each (potentially) high‐power link along the end‐to‐end path identified in the first phase. Further, the design of LPAR enables nodes to collect their neighborhood information ‘on‐demand’, which can effectively reduce the overhead for gathering such information. LPAR is suitable for both homogeneous and non‐homogeneous networks. Simulation results demonstrate that LPAR achieves improved performance in reducing protocol overhead and also in prolonging network lifetime as compared with existing work. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
ABRP: Anchor-based Routing Protocol for Mobile Ad Hoc Networks   总被引:2,自引:0,他引:2  
Ad hoc networks, which do not rely on any infrastructure such as access points or base stations, can be deployed rapidly and inexpensively even in situations with geographical or time constraints. Ad hoc networks are attractive in both military and disaster situations and also in commercial uses like sensor networks or conferencing. In ad hoc networks, each node acts both as a router and as a host. The topology of an ad hoc network may change dynamically, which makes it difficult to design an efficient routing protocol. As more and more wireless devices connect to the network, it is important to design a scalable routing protocol for ad hoc networks. In this paper, we present Anchor-based Routing Protocol (ABRP), a scalable routing protocol for ad hoc networks. It is a hybrid routing protocol, which combines the table-based routing strategy with the geographic routing strategy. However, GPS (Global Positioning System) (Kaplan, Understanding GPS principles and Applications, Boston: Artech House publishers, 1996) support is not needed. ABRP consists of a location-based clustering protocol, an intra-cell routing protocol and an inter-cell routing protocol. The location-based clustering protocol divides the network region into different cells. The intra-cell routing protocol routes packets within one cell. The inter-cell routing protocol is used to route packets between nodes in different cells. The combination of intra-cell and inter-cell routing protocol makes ABRP highly scalable, since each node needs to only maintain routes within a cell. The inter-cell routing protocol establishes multiple routes between different cells, which makes ABRP reliable and efficient. We evaluate the performance of ABRP using ns2 simulator. We simulated different size of networks from 200 nodes to 1600 nodes. Simulation results show that ABRP is efficient and scales well to large networks. ABRP combines the advantages of multi-path routing strategy and geographic routing strategy—efficiency and scalability, and avoids the burden—GPS support.  相似文献   

20.
In this paper we use the Erlang theory to quantitatively analyse the trade offs between energy conservation and quality of service in an ad-hoc wireless sensor network. Nodes can be either sleeping, where no transmission or reception can occur, or awake where traffic is processed. Increasing the proportion of time spent in the sleeping state will decrease throughput and increase packet loss and delivery delay. However there is a complex relationship between sleeping time and energy consumption. Increasing the sleeping time does not always lead to an increase in the energy saved. We identify the energy consumption profile for various levels of sensor network activity and derive an optimum energy saving curve that provides a basis for the design of extended-life ad hoc wireless sensor networks. Qiang Gao is a research fellow in Electronic Engineering at Aston University. He received his B.S. in Theoretical Physics from Southwest Normal University in 1994, M.S. in Theoretical Physics from Lanzou University in 1997, and Ph.D. degree in Computer Engineering from Chinese Academy of Science in 2000. His research interests include ad hoc networks, multimedia networks, information security, CSCW. Keith Blow is a Professor in Engineering in the School of Engineering at Aston University. He worked for eighteen years in the research laboratories of BT studying optical solitons and the applications of nonlinearity to optical communications. In 1999 he moved to Aston University. In addition to his interests in optical communications he is also working on performance modelling and optimisation of ad-hoc sensor networks. David Holding is a Reader in Electronic Engineering in the School of Engineering at Aston University. He has expertise in the design of digital and programmable electronic systems, leads the digital electronics design programmes and is responsible for the associated laboratories and research facilities. Dr Holding has research interests in the design of sensor networks, distributed processing and control systems, concurrent real-time software and fault tolerant systems, and FPGA/SOC implementation. Ian Marshall is Professor of Distributed Systems in the Computing Lab at the University of Kent and a Visiting Professor in the Electrical Engineering Department at University College London. He is also Technical Director of the DTI funded Envisense research centre. Between 2001 and 2003 he was a Royal Society Industry Fellow at University College London where he led the initial research on self-organising sensor networks, using nature inspired decentralised control algorithms, now being further explored by the Envisense researchers, and the ubiquitous systems reasearch group at Kent. Previously he worked for BT in active networks & services, optical networks, broadband networks, network strategy, Internet and distributed systems. He is a chartered engineer, a member of council at the Institute of Physics and a fellow of the British Computer Society and of the Institute of Electrical Engineers. He serves on several institute committees, on EPSRC and European research panels, and on numerous programme committees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号