首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
On the basis of the fusion behavior of poly(vinyl chloride) (PVC), the influence of compounding route on the properties of PVC/(layered silicate) nanocomposites was studied. Four different compounding addition sequences were examined during the melt compounding of PVC with montmorillonite (MMT) clay, including (a) a direct dry mixing of PVC and nanoclay, (b) an addition of nanoclay at compaction, (c) an addition of nanoclay at the onset of fusion, and (d) an addition of nanoclay at equilibrium torque. Both unmodified sodium montmorillonite (Na+‐MMT) and organically modified montmorillonite (Org.‐MMT) clays were used, and the effect of the addition sequence of the clay during compounding on its dispersion in the matrix was evaluated by X‐ray diffraction and transmission electron miscroscopy. The surface color change, dynamic mechanical analysis, and flexural and tensile properties of PVC/clay nanocomposites were also studied. The experimental results indicated that both the extent of property improvement and the dispersion of nanoparticles in PVC/(layered silicate) nanocomposites are strongly influenced by the degree of gelation achieved in PVC compounds during processing. The addition of nanoclay to PVC must be accomplished at the onset of fusion, when PVC particles are reduced in size, in order to produce nanocomposites with better nanodispersion and enhanced mechanical properties. Overall, rigid PVC nanocomposites with unmodified clay (Na+‐MMT) were more thermally stable and exhibited better mechanical properties than their counterparts with organically modified clay (Org.‐MMT). J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

2.
Poly(vinyl alcohol) (PVA)/clay nanocomposites were synthesized using the solution intercalation method. Na ion‐exchanged clays [Na+–saponite (SPT) and Na+–montmorillonite (MMT)] and alkyl ammonium ion‐exchanged clays (C12–MMT and C12OOH–MMT) were used for the PVA nanocomposites. From the morphological studies, the Na ion‐exchanged clay is more easily dispersed in a PVA matrix than is the alkyl ammonium ion‐exchanged clay. Attempts were also made to improve both the thermal stabilities and the tensile properties of PVA/clay nanocomposite films, and it was found that the addition of only a small amount of clay was sufficient for that purpose. Both the ultimate tensile strength and the initial modulus for the nanocomposites increased gradually with clay loading up to 8 wt %. In C12OOH–MMT, the maximum enhancement of the ultimate tensile strength and the initial modulus for the nanocomposites was observed for blends containing 6 wt % organoclay. Na ion‐exchanged clays have higher tensile strengths than those of organic alkyl‐exchanged clays in PVA nanocomposites films. On the other hand, organic alkyl‐exchanged clays have initial moduli that are better than those of Na ion‐exchanged clays. Overall, the content of clay particles in the polymer matrix affect both the thermal stability and the tensile properties of the polymer/clay nanocomposites. However, a change in thermal stability with clay was not significant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3208–3214, 2003  相似文献   

3.
Nanocomposites of poly(vinyl alcohol) (PVA), nanofibrillated cellulose (NFC), and montmorillonite (MMT) clay were prepared via solvent casting. In addition to investigating the effect of clay loading, PVA matrices crosslinked with poly(acrylic acid) (PAA) were prepared and compared with linear (noncrosslinked) PVA nanocomposites. 13C NMR and infrared spectroscopy confirmed the presence of crosslinks. Scanning electron microscopy revealed effective NFC and MMT clay dispersion throughout the nanocomposites, while X‐ray diffraction highlighted the effectiveness of PAA to encourage clay dispersion. MMT clay provided a barrier against the diffusion of water and oxygen (molecules) through the nanocomposite films. Permeability and adsorption were further reduced by crosslinking, while oxygen barrier properties were remarkably enhanced at elevated relative humidities. Thermal stability of the PVA segments was strengthened by the presence of MMT clay and crosslinks. MMT clay–reinforced PVA and NFC within the films, increasing the Young's modulus, tensile strength, and glass transition temperature. Crosslinking further enhanced the thermomechanical properties by imparting physical restraints on polymer chain segments, providing elasticity, and ductility. The hybrid films were successfully reinforced at elevated humidities, with nanocomposites displaying enhanced storage moduli and near‐complete recovery. POLYM. COMPOS., 35:1117–1131, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
The main objective of this study was to synthesize and characterize the properties of ethylene–propylene–diene terpolymer (EPDM)/clay nanocomposites. Pristine clay, sodium montmorillonite (Na+–MMT), was intercalated with hexadecyl ammonium ion to form modified organoclay (16Me–MMT) and the effect of intercalation toward the change in interlayer spacing of the silicate layers was studied by X‐ray diffraction, which showed that the increase in interlayer spacing in Na+–MMT by 0.61 nm is attributed to the intercalation of hexadecyl ammonium ion within the clay layers. In the case of EPDM/16Me–MMT nanocomposites, the basal reflection peak was shifted toward a higher angle. However, gallery height remained more or less the same for different EPDM nanocomposites with organoclay content up to 8 wt %. The nanostructure of EPDM/clay composites was characterized by transmission electron microscopy, which established the coexistence of intercalated and exfoliated clay layers with an average layer thickness in the nanometer range within the EPDM matrix. The significant improvement in thermal stability and mechanical properties reflects the high‐performance nanocomposite formation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2429–2436, 2004  相似文献   

5.
The polymerizable cationic surfactant, vinylbenzyldimethylethanolammouium chloride (VBDEAC), was synthesized to functionalize montmorillonite (MMT) clay and used to prepare exfoliated polystyrene–clay nanocomposites. The organophilic MMT was prepared by Na+ exchanged montmorillonite and ammonium cations of the VBDEAC in an aqueous medium. Polystyrene–clay nanocomposites were prepared by free‐radical polymerization of the styrene containing intercalated organophilic MMT. Dispersion of the intercalated montmorillonite in the polystyrene matrix determined by X‐ray diffraction reveals that the basal spacing is higher than 17.6 nm. These nanocomposites were characterized by differential scanning calorimetry (DSC), transmission electron micrograph (TEM), thermal gravimetric analysis (TGA), and mechanical properties. The exfoliated nanocomposites have higher thermal stability and better mechanical properties than the pure polystyrene. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1370–1377, 2002  相似文献   

6.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were synthesized by a simple technique of a monomer casting method, bulk polymerization. The products were purified by hot acetone extraction and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), examination of their mechanical properties, and light transmittance testing. Although XRD data did not show any apparent order of the MMT layers in the nanocomposites, TEM revealed parallel MMT layers with interlamellar spacings of an average of 9.8 nm and the presence of remnant multiplets of nonexfoliated layers. Therefore, PMMA chains were intercalated in the galleries of MMT. DSC and TGA traces also corroborated the confinement of the polymer in the inorganic layer by exhibiting the increase of glass‐transition temperatures and mass loss temperatures in the thermogram. Both the thermal stability and the mechanical properties of the products appeared to be substantially enhanced, although the light transmittances were not lost. Also, the materials had excellent mechanical properties. Measurement of the tensile properties of the PMMA/MMT nanocomposites indicated that the tensile modulus increased up to 1013 MPa with the addition of 0.6 wt % MMT, which was about 39% higher than that of the corresponding PMMA; the tensile strength and Charpy notched impact strength increased to 88 MPa and 12.9 kJ/m2, respectively. As shown by the aforementioned results, PMMA/MMT nanocomposites may offer new technology and business opportunities. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 348–357, 2005  相似文献   

7.
Two kinds of polyvinyl chloride (PVC)/montmorillonite (MMT) nanocomposites were prepared by the melt intercalation method based on a thermally stable, rigid‐rod aromatic amine modifier and a commonly used 1‐hexadecylamine. The information on morphological structure of PVC/MMT nanocomposites was obtained using XRD and TEM. The mechanical, thermal, and flame retardant properties of the nanocomposites were characterized by universal tester, DMA, TGA, and cone calorimeter. The degree of degradation of PVC was studied by 1H‐NMR. MMT treated by the aromatic amine exhibited better dispersibility than that treated by 1‐hexadecylamine. The nanocomposites, based on this MMT, consequently exhibited better mechanical, thermal, and flame retardant properties and lower degradation degree than those based on 1‐hexadecylamine‐treated MMT. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 567–575, 2004  相似文献   

8.
The tensile and impact properties of amine‐cured diglycidyl ether of bisphenol A based nanocomposites reinforced by organomontmorillonite clay nanoplatelets are reported. The sonication processing scheme involved the sonication of the constituent materials in a solvent followed by solvent extraction to generate nanocomposites with homogeneous dispersions of the organoclay nanoplatelets. The microstructure of the clay nanoplatelets in the nanocomposites was observed with transmission electron microscopy, and the clay nanoplatelets were well dispersed and were intercalated and exfoliated. The tensile modulus of epoxy at room temperature, which was above the glass‐transition temperature of the nanocomposites, increased approximately 50% with the addition of 10 wt % (6.0 vol %) clay nanoplatelets. The reinforcing effect of the organoclay nanoplatelets was examined with respect to the Tandon–Weng and Halpin–Tsai models. The tensile strength was improved only when 2.5 wt % clay nanoplatelets were added. The Izod impact strength decreased with increasing clay content. The failure surfaces of the nanocomposites were observed with environmental scanning electron microscopy and confocal laser scanning microscopy. The roughness of the failure surface was correlated with the tensile strength. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 281–287, 2005  相似文献   

9.
A kind of novel polyether polyurethane (PU)/clay nanocomposite was synthesized using poly(tetramethylene glycol), 4,4′‐diphenylmethane diisocyanate (MDI), 1,6‐hexamethylenediamine, and modified Na+‐montmorillonite (MMT). Here, organicly modified MMT (O‐MMT) was formed by applying 1,6‐hexamethylenediamine as a swelling agent to treat the Na+‐MMT. The X‐ray analysis showed that exfoliation occurred for the higher O‐MMT content (40 wt %) in the polymer matrix. The mechanical analysis indicated that, when the O‐MMT was used as a chain extender to replace a part of the 1,2‐diaminopropane to form PU/clay nanocomposites, the strength and strain at break of the polymer was enhanced when increasing the content of O‐MMT in the matrix. When the O‐MMT content reached about 5%, the tensile strength and elongation at break were over 2 times that of the pure PU. The thermal stability and the glass transition of the O‐MMT/PU nanocomposites also increased with increasing O‐MMT content. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 6–13, 2006  相似文献   

10.
The inter-cross-linked networks of unsaturated polyester (UP) toughened epoxy blends were developed. Montmorillonite (MMT) clay was dispersed into the same system to prepare blended epoxy/UP/clay nanocomposites in different weight ratios viz. 0%, 1%, 2%, 3% and 5%. Mechanical properties like tensile strength (TS), impact strength (IS) and interlaminar shear strength (ILSS) were characterized for the above nanocomposites. Blended nanocomposites were fabricated by high shear mechanical mixing followed by ultra-sonication process to get homogeneous mixing under the aid of in situ polymerization. Mechanical properties were studied as per ASTM standards. Data obtained from mechanical property studies indicated that the introduction of UP into epoxy resin improved the impact strength to an appreciable extent. Impact strength (IS) and tensile strength (TS) were significantly improved and optimized at 3 wt. % clay content when compared with neat blend (0 wt. % clay) composites. The homogeneous morphologies of the UP toughened epoxy and epoxy/UP/clay nanocomposite systems were ascertained using scanning electron microscope (SEM) studies.  相似文献   

11.
The thermoplastic polyurethane/montmorillonite (TPU/MMT) nanocomposites were prepared by melt intercalation. The structure and property of the TPU/MMT nanocomposites were studied by XRD, TEM, TG, Molau test, and mechanical property measurement. The interlayer spacing between the MMT platelets in TPU/MMT nanocomposites blended for 10 and 15 min was the same. The silicate platelets were dispersed in TPU matrix on 5–15 nm scale for TPU/MMT nanocomposites. The interface interaction between the silicate layers and TPU matrix for TPU/MMT nanocomposites was strong. Compared to those of pure TPU, the tensile strength and tear strength of the TPU/MMT nanocomposites increased. The tensile strength and tear strength of the TPU/MMT nanocomposites decreased with increasing blending time because of the degradation of the TPU matrix. The thermal stability of the TPU/MMT nanocomposites was lower than that of the pure TPU in the first step, whereas in the second step, the TPU/MMT nanocomposites showed higher thermal stability. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers  相似文献   

12.
Epoxy‐clay nanocomposites were synthesized to examine the effects of the content and type of different clays on the structure and mechanical properties of the nanocomposites. Diglycidyl ether of bisphenol‐A (epoxy) was reinforced by 0.5–11 wt % natural (Cloisite Na+) and organically modified (Cloisite 30B) types of montmorillonite. SEM results showed that as the clay content increased, larger agglomerates of clay were present. Nanocomposites with Cloisite 30B exhibited better dispersion and a lower degree of agglomeration than nanocomposites with Cloisite Na+. X‐ray results indicated that in nanocomposites with 3 wt % Cloisite 30B, d‐spacing expanded from 18.4 Å (the initial value of the pure clay) to 38.2 Å. The glass transition temperature increased from 73°C, in the unfilled epoxy resin, to 83.5°C in the nanocomposite with 9 wt % Cloisite 30B. The tensile strength exhibited a maximum at 1 wt % modified clay loading. Addition of 0.5 wt % organically modified clay improved the impact strength of the epoxy resin by 137%; in contrast, addition of 0.5 wt % unmodified clay improved the impact strength by 72%. Tensile modulus increased with increasing clay loading in both types of nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1081–1086, 2005  相似文献   

13.
Montmorillonite (MMT)‐based polyimide (PI) nanocomposites were prepared via two‐stage polymerization of PI using polyamic acid (PAA). The clay was organically modified using various alkylammonium ions to examine the effect of changes in alkyl length on the intercalation spacing of both the treated clays and their hybrids with PAA and PI. The intercalation behavior of clay in the PI matrix and its thermal and mechanical properties were investigated as a function of clay concentration. The d‐spacing of organically modified MMT (O‐MMT) increased with increasing length of the alkylammonium chain. PI/O‐MMT hybrids form exfoliated nanocomposites at clay concentrations below 2 wt%, while they form intercalated nanocomposites together with some exfoliated ones at clay contents exceeding 4 wt%. Young's modulus increased rapidly to a clay loading of 2 wt%, and leveled off with further increases in clay loading. The tensile strength at break increased rapidly up to a clay loading of 1 wt%, and then decreased sharply, while the strain at break showed a monotonic decrease with increasing clay loading from 0 to 8 wt%. The storage modulus, E′, in the temperature range below the glass transition temperature Tg, generally increased with increasing clay content, except at the highest clay content of 8 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
This study investigated the influence of montmorillonite (MMT) content on the mechanical/thermal properties of microcellular injection‐molded polylactide (PLA)/clay nanocomposites. Carbon dioxide was the blowing agent. The PLA/MMT nanocomposites were prepared by twin screw extrusion. The results showed that as MMT content is increased, tensile strength, impact strength, and cell density decrease. This is caused by the speed degradation of PLA due to the addition of MMT. MMT decreases the crystallization temperature but increases the decomposition temperature of the nanocomposites. The XRD results showed that the layer spacing of the clay increases as MMT content increases. TEM pictures showed that the MMT is well dispersed within the PLA matrix. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

15.
Poly(vinyl alcohol) (PVA)/montmorillonite clay (MMT) nanocomposites in the form of films were prepared under the effect of electron beam irradiation. The PVA/MMT nanocomposites gels were characterized by X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and mechanical measurements. The study showed that the appropriate dose of electron beam irradiation to achieve homogeneous nanocomposites films and highest gel formation was 20 kGy. The introduction of MMT (up to 4 wt %) results in improvement in tensile strength, elongation at break, and thermal stability of the PVA matrix. In addition, the intercalation of PVA with the MMT clay leads to an impressive improved water resistance, indicating that the clay is well dispersed within the polymer matrix. Meanwhile, it was proved that the intercalation has no effect on the metal uptake capability of PVA as determined by a method based on the color measurements. XRD patterns and SEM micrographs suggest the coexistence of exfoliated intercalated MMT layers over the studied MMT contents. The DSC thermograms showed clearly that the intercalation of PVA polymer with these levels of MMT has no influence on the melting transitions; however, the glass transition temperature (Tg) for PVA was completely disappeared, even at low levels of MMT clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1129–1138, 2006  相似文献   

16.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites were prepared by compounding maleic anhydride‐g‐polypropylene (MAPP) with MMT modified with α,ω‐diaminododecane. Structural characterization confirmed the formation of characteristic amide linkages and the intercalation of MAPP between the silicate layers. In particular, X‐ray diffraction patterns of the modified clay and MAPP/MMT composites showed 001 basal spacing enlargement as much as 1.49 nm. Thermogravimetric analysis revealed that the thermal decomposition of the composite took place at a slightly higher temperature than that of MAPP. The heat of fusion of the MAPP phase decreased, indicating that the crystallization of MAPP was suppressed by the clay layers. PP/MAPP/MMT composites showed a 20–35% higher tensile modulus and tensile strength compared to those corresponding to PP/MAPP. However, the elongation at break decreased drastically, even when the content of MMT was as low as 1.25–5 wt %. The relatively short chain length and loop structure of MAPP bound to the clay layers made the penetration of MAPP molecules into the PP homopolymer phase implausible and is thought to be responsible for the decreased elongation at break. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 307–311, 2005  相似文献   

17.
A novel process for the preparation of poly(propylene)/montmorillonite (PP/MMT) nanocomposites was developed via simultaneous solution grafting‐intercalation in the presence of a reactive ammonium cation that can be grafted onto poly(propylene). Partially introducing this reactive cation into long alkyl ammonium modified MMT interlayers can transfer a conventional microcomposite into intercalated/exfoliated nanocomposites, which was evidenced by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The PP chains were tethered onto the clay surface through the bridge of the reactive ammonium cations, which can be characterized by FTIR. The bridged chemical bonding also results in a good interface adhesion between PP and MMT, as confirmed by SEM investigation. The enhanced thermal properties of PP/MMT nanocomposites were characterized by thermogravimetric analysis. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1018–1023, 2004  相似文献   

18.
Thermoplastic olefin (TPO)/clay nanocomposites were made with clay loadings of 0.6–6.7 wt %. The morphology of these TPO/clay nanocomposites was investigated with atomic force microscopy, transmission electron microscopy (TEM), and X‐ray diffraction. The ethylene–propylene rubber (EPR) particle morphology in the TPO underwent progressive particle breakup and decreased in particle size as the clay loading increased from 0.6 to 5.6 wt %. TEM micrographs showed that the clay platelets preferentially segregated to the rubber–particle interface. The breakup of the EPR particles was suspected to be due to the increasing melt viscosity observed as the clay loading increased or to the accompanying chemical modifiers of the clay, acting as interfacial agents and reducing the interfacial tension with a concomitant reduction in the particle size. The flexural modulus of the injection moldings increased monotonically as the clay loading increased. The unnotched (Izod) impact strength was substantially increased or maintained, whereas the notched (Izod) impact strength decreased modestly as the clay loading increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 928–936, 2004  相似文献   

19.
Low‐molecular‐weight copolymers of styrene and vinylbenzyl ammonium salts (oligomeric surfactant) were used to modify montmorillonite (MMT). The oligomeric‐modified MMT showed good thermal stability, which made it suitable to be used for preparing polycarbonate(PC)/MMT nanocomposites at high temperature. A different series of PC/MMT nanocomposites had been prepared by melt processing using a twin screw extruder. The effect of oligomeric surfactant structure and clay loading on the morphology, mechanical property, thermal stability, and color appearance of the nanocomposites were explored. The results of X‐ray diffraction and transmission electron microscopy analyses indicated that the PC/MMT nanocomposites had partially exfoliated structures. The PC/MMT nanocomposites were found to retain light colored, which was important for optical application. Compared to neat PC, the nanocomposites showed better properties of thermal stability and heat insulation. The mechanical properties of the nanocomposites are significantly enhanced by incorporating clay into the PC matrix. The tensile strength of nanocomposites with 2 wt% clay content was up to 55 MPa, which was much higher than that of the neat PC (37 MPa). The maximum tensile modulus value was 19% higher than that of neat PC. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

20.
Novel nanocomposite films based on poly(ethylene-co-acrylic acid) (PEAA) and zinc montmorillonite (Zn2+–MMT) were fabricated using a solution casting method with water as the solvent. Transmission electron microscopy indicated that Zn2+–MMT was distributed finely in the PEAA matrix. X-ray diffraction indicated that an ion exchange process occurs between Zn2+–MMT and PEAA. The nanocomposites filled with a low Zn2+–MMT loading increased the tensile strength and elongation at break. The significant improvements in these mechanical properties were attributed to the fine dispersion of Zn2+–MMT in the polymer and the covalent interaction between the polymer chains and Zn2+ cations. Thermogravimetric analysis and differential thermal calorimetry confirmed that PEAA formed a network through the presence of Zn2+ cations. A poly(ethylene-co-acrylic acid) zinc salt (PEAAZn) film by hot pressing was introduced for comparison. Zn2+–MMT improved the mechanical properties of the PEAA significantly compared to that of PEAAZn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号