首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colour emotion is a feeling or emotion induced in our brains when we look at a colour. In this article, the colour emotional responses obtained by conducting visual experiments in different regions, namely Hong Kong, Japan and Thailand, using a set of 218 colour samples are compared using a quantitative approach in an attempt to study the influence of different cultural and geographical locations. Twelve pairs of colour emotions described in opponent words were used. These word pairs are warm–cool, light–dark, deep–pale, heavy–light, vivid–sombre, gaudy–plain, striking–subdued, dynamic–passive, distinct–vague, transparent–turbid, soft–hard, and strong–weak. These word pairs represent the fundamental emotional response of human beings toward colour. The influences of lightness and chroma were found to be much more important than that of the hue on the colour emotions studied. Good correlations of colour emotions among these three regions in East Asia were found, with the best ones for colour emotion pairs being light–dark and heavy–light. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 451–457, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20062  相似文献   

2.
Eleven colour‐emotion scales, warm–cool, heavy–light, modern–classical, clean–dirty, active–passive, hard–soft, harmonious–disharmonious, tense–relaxed, fresh–stale, masculine–feminine, and like–dislike, were investigated on 190 colour pairs with British and Chinese observers. Experimental results show that gender difference existed in masculine–feminine, whereas no significant cultural difference was found between British and Chinese observers. Three colour‐emotion factors were identified by the method of factor analysis and were labeled “colour activity,” “colour weight,” and “colour heat.” These factors were found similar to those extracted from the single colour emotions developed in Part I. This indicates a coherent framework of colour emotion factors for single colours and two‐colour combinations. An additivity relationship was found between single‐colour and colour‐combination emotions. This relationship predicts colour emotions for a colour pair by averaging the colour emotions of individual colours that generate the pair. However, it cannot be applied to colour preference prediction. By combining the additivity relationship with a single‐colour emotion model, such as those developed in Part I, a colour‐appearance‐based model was established for colour‐combination emotions. With this model one can predict colour emotions for a colour pair if colour‐appearance attributes of the component colours in that pair are known. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 292–298, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20024  相似文献   

3.
In this study three colour preference models for single colours were developed. The first model was developed on the basis of the colour emotions, clean–dirty, tense–relaxed, and heavy–light. In this model colour preference was found affected most by the emotional feeling “clean.” The second model was developed on the basis of the three colour‐emotion factors identified in Part I, colour activity, colour weight, and colour heat. By combining this model with the colour‐science‐based formulae of these three factors, which have been developed in Part I, one can predict colour preference of a test colour from its colour‐appearance attributes. The third colour preference model was directly developed from colour‐appearance attributes. In this model colour preference is determined by the colour difference between a test colour and the reference colour (L*, a*, b*) = (50, ?8, 30). The above approaches to modeling single‐colour preference were also adopted in modeling colour preference for colour combinations. The results show that it was difficult to predict colour‐combination preference by colour emotions only. This study also clarifies the relationship between colour preference and colour harmony. The results show that although colour preference is strongly correlated with colour harmony, there are still colours of which the two scales disagree with each other. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 381–389, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20047  相似文献   

4.
This article classifies colour emotions for single colours and develops colour‐science‐based colour emotion models. In a psychophysical experiment, 31 observers, including 14 British and 17 Chinese subjects assessed 20 colours on 10 colour‐emotion scales: warm–cool, heavy–light, modern–classical, clean–dirty, active–passive, hard–soft, tense–relaxed, fresh–stale, masculine–feminine, and like–dislike. Experimental results show no significant difference between male and female data, whereas different results were found between British and Chinese observers for the tense–relaxed and like–dislike scales. The factor analysis identified three colour‐emotion factors: colour activity, colour weight, and colour heat. The three factors agreed well with those found by Kobayashi and Sato et al. Four colour‐emotion models were developed, including warm–cool, heavy–light, active–passive, and hard–soft. These models were compared with those developed by Sato et al. and Xin and Cheng. The results show that for each colour emotion the models of the three studies agreed with each other, suggesting that the four colour emotions are culture‐independent across countries. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 232–240, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20010  相似文献   

5.
In this study, the crispening effect was clearly observed when 38 neutral‐coloured sample pairs with only lightness differences were assessed under 5 neutral backgrounds of different lightness values. The sample pairs are CRT‐based colours, and they are selected along the CIELAB L* axis from 0 to 100. The magnitude of colour difference of each pair is 5.0 CIELAB units. The visual assessment results showed that there is a very large crispening effect. The colour differences of the same pair assessed under different backgrounds could differ by a factor of up to 8 for a sample pair with low lightness. The perceived colour difference was enlarged when the lightness of a sample pair was similar to that of the background. The extent of crispening effect and its quantification are discussed in this investigation. The performances of five colour‐difference equations were also tested, including the newly developed CIEDE2000. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 374–380, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20045  相似文献   

6.
Simultaneous contrast effects on lightness and hue in surface colours were investigated. Test colours, surrounded by induction colours, were matched by colours surrounded by neutral gray. The matching colours were selected from a series of samples that varied in either lightness or hue respectively. The lightness experiments were carried out by a panel of 20 observers on 135 test/induction colour combinations. The hue experiments were conducted on 51 test/induction colour combinations by a panel of eight observers. The lightness of the test colour was found to decrease linearly with the lightness of the induction colour, regardless of the hue of the induction colour. The magnitude of the lightness contrast effect in fabric colours was found to be about one‐quarter of that found in CRT display colours in a previous study. The hue contrast effect found in this study followed the opponent‐colour theory. Two distinctly different regions could be identified when the hue difference was plotted against hue‐angle difference between the induction colour and the test colour. The slope of the line in the region where the hue of the induction colour is close to the test colour was much larger than the slope in the other region, indicating that the hue contrast effect was more obvious when the induction colour was close to the test colour. © 2006 Wiley Periodicals, Inc. Col Res Appl, 32, 55–64, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20285  相似文献   

7.
Psychophysical experiments were conducted in the UK, Taiwan, France, Germany, Spain, Sweden, Argentina, and Iran to assess colour emotion for two‐colour combinations using semantic scales warm/cool, heavy/light, active/passive, and like/dislike. A total of 223 observers participated, each presented with 190 colour pairs as the stimuli, shown individually on a cathode ray tube display. The results show consistent responses across cultures only for warm/cool, heavy/light, and active/passive. The like/dislike scale, however, showed some differences between the observer groups, in particular between the Argentinian responses and those obtained from the other observers. Factor analysis reveals that the Argentinian observers preferred passive colour pairs to active ones more than the other observers. In addition to the cultural difference in like/dislike, the experimental results show some effects of gender, professional background (design vs. nondesign), and age. Female observers were found to prefer colour pairs with high‐lightness or low‐chroma values more than their male counterparts. Observers with a design background liked low‐chroma colour pairs or those containing colours of similar hue more than nondesign observers. Older observers liked colour pairs with high‐lightness or high‐chroma values more than young observers did. Based on the findings, a two‐level theory of colour emotion is proposed, in which warm/cool, heavy/light, and active/passive are identified as the reactive‐level responses and like/dislike the reflective‐level response. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

8.
Two psychophysical experiments were carried out to investigate whether or not colour emotion responses would change with the advance of the viewer's age. Two forms of stimuli were used: 30 single colours (for Experiment 1) and 190 colour pairs (for Experiment 2). Four word pairs, warm/cool, heavy/light, active/passive, and like/dislike, were used to assess colour emotion and preference in Experiment 1. In Experiment 2, harmonious/disharmonious was also used in addition to the four scales for Experiment 1. A total of 72 Taiwanese observers participated, including 40 (20 young and 20 older) for Experiment 1 and 32 (16 young and 16 older) for Experiment 2. The experimental results show that for single colours, all colour samples were rated as less active, less liked, and cooler for older observers than for young observers. For colour combinations, light colour pairs were rated as less active and cooler for older observers than for young observers; achromatic colour pairs and those consisting of colours in similar chroma were rated as cooler, less liked and less harmonious for older observers than for young observers. The findings may challenge a number of existing theories, including the adaptation mechanism for retaining consistent perception of colour appearance across the lifespan, the modeling of colour emotion based on relative colour appearance values, and the additive approach to prediction of colour‐combination emotion. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

9.
In memory‐matching techniques, the remembered colour might differ from the original colour even if the viewing situation is the same. Our aim was to point out whether these so‐called memory shifts are significant in the everyday situations of viewing photos depicting sky, skin, or plant, or viewing standalone uniform colour patches of sky, skin, or plant colours. In many cases, significant memory shifts have been found. Considering only one type of object (sky or skin or plant), memory shifts turned out to be systematic in the sense that they were directed toward specific intervals of hue, chroma, and lightness. This tendency was more explicit for photos than for standalone colour patches. A method to quantify prototypical colours and their tolerance bounds was suggested. © 2001 John Wiley & Sons, Inc. Col Res Appl, 26, 278–289, 2001  相似文献   

10.
The aim of this study was to develop psychophysical models that predict the influence of pack colours on consumers' psychological responses of fruit juices, such as visually perceived expectations of freshness, quality, liking, and colour harmony. Two existing colour harmony models derived from experiments involving only uniform colour plaques were tested using the juice packaging experimental data. Both models failed to predict the visual results obtained. Nevertheless, two parameters relevant to chromatic difference and hue difference were somewhat associated with the visual results. This suggested that, among all colour harmony principles for uniform colours, only the equal‐hue and the equal‐chroma principles can be adopted to describe colour harmony of packaging used for juice. This has the implication that the principles of colour harmony may vary according to the context in which the colours are used. A new colour harmony model was developed for juice packaging, and a predictive model of freshness was derived. Both models adopted CIELAB colour attributes of the package colour and the fruit image colour to predict viewers' responses. Expected liking and juice quality can be predicted using the colour harmony model while expected freshness can be predicted using the predictive model of freshness. © 2013 Wiley Periodicals, Inc. Col Res Appl, 40, 157–168, 2015  相似文献   

11.
The simultaneous contrast effect is investigated in this article. A total of 174 and 154 test/induction combinations were studied for CRT and surface colours respectively. Each combination was assessed by nine observers using a matching technique. The test and induction colours used for CRT colours were similar to surface colours using fabric samples. The results indicated a strong lightness contrast effect for both CRT and surface media; that is, the lightness of a test colour surrounded by a lighter induction colour was reduced for both CRT and surface colours. However, the effect in CRT medium was more pronounced than in the surface medium. © 2004 Wiley Periodicals, Inc. Col Res Appl, 30, 13–20, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20074  相似文献   

12.
Psychophysical experiments were conducted to assess unique hues on a CRT display for a large sample of colour‐normal observers (n = 185). These data were then used to evaluate the most commonly used colour appearance model, CIECAM02, by transforming the CIEXYZ tristimulus values of the unique hues to the CIECAM02 colour appearance attributes, lightness, chroma and hue angle. We report two findings: (1) the hue angles derived from our unique hue data are inconsistent with the commonly used Natural Color System hues that are incorporated in the CIECAM02 model. We argue that our predicted unique hue angles (derived from our large dataset) provide a more reliable standard for colour management applications when the precise specification of these salient colours is important. (2) We test hue uniformity for CIECAM02 in all four unique hues and show significant disagreements for all hues, except for unique red which seems to be invariant under lightness changes. Our dataset is useful to improve the CIECAM02 model as it provides reliable data for benchmarking. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

13.
A new set of quantitative models of colour emotion and colour harmony were developed in this study using psychophysical data collected from 12 regions in the world, including Argentina, China, France, Germany, Hungary, Iran, Japan, Spain, Sweden, Taiwan, Thailand, and the UK. These data have previously been published in journals or conferences (for details see Tables 1 and 2 ). For colour emotion, three new models were derived, showing satisfactory predictive performance in terms of an average correlation coefficient of 0.78 for “warm/cool”, 0.80 for “heavy/light” and 0.81 for “active/passive”. The new colour harmony model also had satisfactory predictive performance, with an average correlation coefficient of 0.72. Principal component analysis shows that the common colour harmony principles, including hue similarity, chroma similarity, lightness difference and high lightness principles, were partly agreed by observers of the same region. The findings suggest that it is feasible to develop universal models of colour emotion and colour harmony, and that the former was found to be relatively more culture‐independent than the latter.  相似文献   

14.
An aesthetic measure based approach for constructing a colour design/selection system is proposed in this article. In this model, an image data base for the relationships between the psychological preference of customers and clothing colour tones is built using the membership functions of a fuzzy set, and an aesthetic measure calculation method based on colour harmony is also proposed. In addition, a skin colour detection theory is proposed to construct a skin colour detection program to detect the skin colour of a customer, which is then taken as the major colour in matching the skin, polo shirt, and(or) pant colours to select the best colour combination. Integrating the skin colour detection theory, colour harmony theory, aesthetic measure method, and fuzzy set theory, a program is constructed to build an aesthetic measure based colour design/selection system. With the aid of this system, one can get proper cloth colours to match his/her skin colour and image requirement by starting with inputting one's colour photo, catching image with a camera, or inputting R, G, B values of his/her skin. The theoretical results for the ranks of clothing colours proposed by the system are examined with the experimental results and the result shows they are very close, suggesting that the proposed colour selection system is acceptable. Although the selection of clothing colours is taken as an example to specify the methodology, it can also be used to develop a system for other products. © 2008 Wiley Periodicals, Inc. Col Res Appl, 33, 411–423, 2008  相似文献   

15.
Popular usage of colour words as parts of speech obey certain rules according to whether they are population dependent and whether use demands a degree of colour vision. The word green refers to that colour most of us see, recognize and categorize as being of the colour called green. But, colours and colour words are to do with emotion as well as perception. What can we learn from the greatest writers, artists and musical composers; how do they, for example, regard green? From them we learn that we perceive colours with our ears as well as our eyes and, in an emotional sense, a colour word means or is associated with just what the writer intends. © 2014 Wiley Periodicals, Inc. Col Res Appl, 40, 111–113, 2015  相似文献   

16.
The colours and architectural characteristics of building facades are the major factors affecting the general appearance of cities. When cities are examined from various perspectives, first impressions are obtained from the geometrical forms and facade colours of buildings. The facade colour arrangements should reflect the features of the region and buildings. In this context various features of natural and artificial environments such as plant life, water elements, climate, and historical texture should be examined, and a facade colour arrangement should be designed according to the examination results. In addition, the other factors effective in determining the colour and style of a building, such as social‐cultural background of the society and traditional and natural building materials, should not be forgotten because in some regions traditional buildings with special construction styles, materials, and colours create a specific identity for the settlements and cities. The aims of this article are to elucidate the colour contrast, colour arrangement, and colour design stages of mass housing and to explain the colour design of Bizimkent Mass Housing, which was constructed in a new dwelling zone in Istanbul, Turkey, as an example of such an arrangement. © 2002 Wiley Periodicals, Inc. Col Res Appl, 27, 291–299, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10068  相似文献   

17.
18.
The appearance of human dentition is important both psychologically and commercially. Many people perceive the lightness and chromaticity of their teeth as key factors in their overall appearance leading to large businesses in materials for colour‐matched fillings and crowns and in tooth whitening products. The human eye is very sensitive to small colour differences, recognizing a row of highly colour‐matched crowns as unnatural yet seeing excessive colour variation or darkness as unattractive. One cause of tooth discolouration is a darkening of the dentine, visible through the enamel. This has lead the authors to develop a model capable of relating ( ) measurements on a scattering surface, in our case dentine, to ( ) measurements when overlaid by a translucent scattering layer, in our case tooth enamel. The model can be used when any scattering layer is superimposed on a coloured surface. In contrast to existing models, no spectral measurements are necessary allowing the use of colourimeters rather than spectrophotometers. However, there are limitations on the degree of colour saturation for both the coloured surface and the scattering layer as the model uses an approximation valid only for weakly saturated colours. As neither the enamel nor the dentine have strongly saturated colouration, the limitation is entirely acceptable for our work. The use of ( ) measurements directly rather than having to measure the spectrum of reflected light is of practical importance as such measurements in a dental surgery are impossible in all but exceptional cases whilst ( ) measurements in the surgery are routine. © 2014 Wiley Periodicals, Inc. Col Res Appl, 40, 504–517, 2015  相似文献   

19.
The texture effect on visual colour difference evaluation was investigated in this study. Five colour centers were selected and textured colour pairs were generated using scanned textile woven fabrics and colour‐mapping technique. The textured and solid colour pairs were then displayed on a characterized cathode ray tube (CRT) monitor for colour difference evaluation. The colour difference values for the pairs with texture patterns are equal to 5.0 CIELAB units in lightness direction. The texture level was represented by the half‐width of histogram, which is called texture strength in this study. High correlation was found between texture strength and visual colour difference for textured colour pairs, which indicates that an increasing of 10 units of texture strength in luminance would cause a decreasing of 0.25 units visual difference for the five colour centers. The ratio of visual difference between textured and solid colour pairs also indicates a high parametric effect of texture. © 2005 Wiley Periodicals, Inc. Col Res Appl, 30, 341–347, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.  相似文献   

20.
Skin‐tone has been an active research subject in photographic colour reproduction. There is a consistent conclusion that preferred skin colours are different from actual skin colours. However, preferred skin colours found from different studies are somewhat different. To have a solid understanding of skin colour preference of digital photographic images, psychophysical experiments were conducted to determine a preferred skin colour region and to study inter‐observer variation and tolerance of preferred skin colours. In the first experiment, a preferred skin colour region is searched on the entire skin colour region. A set of nine predetermined colour centers uniformly sampled within the skin colour ellipse in CIELAB a*b* diagram is used to morph skin colours of test images. Preferred skin colour centers are found through the experiment. In a second experiment, a twice denser sampling of nine skin colour centers around the preferred skin colour center determined in the first experiment are generated to repeat the experiment using a different set of test images and judged by a different panel of observers. The results from both experiments are compared and final preferred skin colour centers are obtained. Variations and hue and chroma tolerances of the observer skin colour preference are also analysed. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号