首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eleven colour‐emotion scales, warm–cool, heavy–light, modern–classical, clean–dirty, active–passive, hard–soft, harmonious–disharmonious, tense–relaxed, fresh–stale, masculine–feminine, and like–dislike, were investigated on 190 colour pairs with British and Chinese observers. Experimental results show that gender difference existed in masculine–feminine, whereas no significant cultural difference was found between British and Chinese observers. Three colour‐emotion factors were identified by the method of factor analysis and were labeled “colour activity,” “colour weight,” and “colour heat.” These factors were found similar to those extracted from the single colour emotions developed in Part I. This indicates a coherent framework of colour emotion factors for single colours and two‐colour combinations. An additivity relationship was found between single‐colour and colour‐combination emotions. This relationship predicts colour emotions for a colour pair by averaging the colour emotions of individual colours that generate the pair. However, it cannot be applied to colour preference prediction. By combining the additivity relationship with a single‐colour emotion model, such as those developed in Part I, a colour‐appearance‐based model was established for colour‐combination emotions. With this model one can predict colour emotions for a colour pair if colour‐appearance attributes of the component colours in that pair are known. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 292–298, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20024  相似文献   

2.
Psychophysical experiments were conducted in the UK, Taiwan, France, Germany, Spain, Sweden, Argentina, and Iran to assess colour emotion for two‐colour combinations using semantic scales warm/cool, heavy/light, active/passive, and like/dislike. A total of 223 observers participated, each presented with 190 colour pairs as the stimuli, shown individually on a cathode ray tube display. The results show consistent responses across cultures only for warm/cool, heavy/light, and active/passive. The like/dislike scale, however, showed some differences between the observer groups, in particular between the Argentinian responses and those obtained from the other observers. Factor analysis reveals that the Argentinian observers preferred passive colour pairs to active ones more than the other observers. In addition to the cultural difference in like/dislike, the experimental results show some effects of gender, professional background (design vs. nondesign), and age. Female observers were found to prefer colour pairs with high‐lightness or low‐chroma values more than their male counterparts. Observers with a design background liked low‐chroma colour pairs or those containing colours of similar hue more than nondesign observers. Older observers liked colour pairs with high‐lightness or high‐chroma values more than young observers did. Based on the findings, a two‐level theory of colour emotion is proposed, in which warm/cool, heavy/light, and active/passive are identified as the reactive‐level responses and like/dislike the reflective‐level response. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

3.
Two psychophysical experiments were carried out to investigate whether or not colour emotion responses would change with the advance of the viewer's age. Two forms of stimuli were used: 30 single colours (for Experiment 1) and 190 colour pairs (for Experiment 2). Four word pairs, warm/cool, heavy/light, active/passive, and like/dislike, were used to assess colour emotion and preference in Experiment 1. In Experiment 2, harmonious/disharmonious was also used in addition to the four scales for Experiment 1. A total of 72 Taiwanese observers participated, including 40 (20 young and 20 older) for Experiment 1 and 32 (16 young and 16 older) for Experiment 2. The experimental results show that for single colours, all colour samples were rated as less active, less liked, and cooler for older observers than for young observers. For colour combinations, light colour pairs were rated as less active and cooler for older observers than for young observers; achromatic colour pairs and those consisting of colours in similar chroma were rated as cooler, less liked and less harmonious for older observers than for young observers. The findings may challenge a number of existing theories, including the adaptation mechanism for retaining consistent perception of colour appearance across the lifespan, the modeling of colour emotion based on relative colour appearance values, and the additive approach to prediction of colour‐combination emotion. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

4.
In this study three colour preference models for single colours were developed. The first model was developed on the basis of the colour emotions, clean–dirty, tense–relaxed, and heavy–light. In this model colour preference was found affected most by the emotional feeling “clean.” The second model was developed on the basis of the three colour‐emotion factors identified in Part I, colour activity, colour weight, and colour heat. By combining this model with the colour‐science‐based formulae of these three factors, which have been developed in Part I, one can predict colour preference of a test colour from its colour‐appearance attributes. The third colour preference model was directly developed from colour‐appearance attributes. In this model colour preference is determined by the colour difference between a test colour and the reference colour (L*, a*, b*) = (50, ?8, 30). The above approaches to modeling single‐colour preference were also adopted in modeling colour preference for colour combinations. The results show that it was difficult to predict colour‐combination preference by colour emotions only. This study also clarifies the relationship between colour preference and colour harmony. The results show that although colour preference is strongly correlated with colour harmony, there are still colours of which the two scales disagree with each other. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 381–389, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20047  相似文献   

5.
Colour emotion is a feeling or emotion induced in our brains when we look at a colour. In this article, the colour emotional responses obtained by conducting visual experiments in different regions, namely Hong Kong, Japan and Thailand, using a set of 218 colour samples are compared using a quantitative approach in an attempt to study the influence of different cultural and geographical locations. Twelve pairs of colour emotions described in opponent words were used. These word pairs are warm–cool, light–dark, deep–pale, heavy–light, vivid–sombre, gaudy–plain, striking–subdued, dynamic–passive, distinct–vague, transparent–turbid, soft–hard, and strong–weak. These word pairs represent the fundamental emotional response of human beings toward colour. The influences of lightness and chroma were found to be much more important than that of the hue on the colour emotions studied. Good correlations of colour emotions among these three regions in East Asia were found, with the best ones for colour emotion pairs being light–dark and heavy–light. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 451–457, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20062  相似文献   

6.
A new set of quantitative models of colour emotion and colour harmony were developed in this study using psychophysical data collected from 12 regions in the world, including Argentina, China, France, Germany, Hungary, Iran, Japan, Spain, Sweden, Taiwan, Thailand, and the UK. These data have previously been published in journals or conferences (for details see Tables 1 and 2 ). For colour emotion, three new models were derived, showing satisfactory predictive performance in terms of an average correlation coefficient of 0.78 for “warm/cool”, 0.80 for “heavy/light” and 0.81 for “active/passive”. The new colour harmony model also had satisfactory predictive performance, with an average correlation coefficient of 0.72. Principal component analysis shows that the common colour harmony principles, including hue similarity, chroma similarity, lightness difference and high lightness principles, were partly agreed by observers of the same region. The findings suggest that it is feasible to develop universal models of colour emotion and colour harmony, and that the former was found to be relatively more culture‐independent than the latter.  相似文献   

7.
During the colour perception process, an associated feeling or emotion is induced in our brains, and this kind of emotion is known as colour emotion. In Part I of this study, a quantitative analysis of the cross‐regional differences and similarities of colour emotions as well as the influence of hue, lightness, and chroma on the colour emotions of the subjects from Hong Kong, Japan, and Thailand, was carried out. In Part II, colour emotions of the subjects in any two regions were compared directly using colour planners showing the effect of the lightness and the chroma of colours. The colour planners can help the designers to understand the taste and feelings of the target customers and facilitate them to select suitable colours for the products that are intended to be supplied in different regions. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 458–466, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20063  相似文献   

8.
A psychophysical experiment was carried out to investigate factors affecting colour preference for Taiwanese floral pattern fabrics, as a case study of object colour preference. A total of 175 test images of Taiwanese fabrics were used as the stimuli presented on a calibrated computer display. The images were generated on the basis of 5 existing Taiwanese fabrics, each manipulated into 35 images by changing the fabric colour. The 35 colours were selected to cover the most frequently used colours for existing Taiwanese fabrics. The 175 test images were assessed by 76 Taiwanese observers in terms of 9 semantic scales, including Taiwanese style/non‐Taiwanese style, Japanese style/non‐Japanese style, splendid/plain, traditional/modern, active/passive, warm/cool, heavy/light, like/dislike and harmonious/disharmonious. The experimental results reveal two underlying factors: “Splendidness” and “Harmony.” The like/dislike response was found to highly correlate with harmonious/disharmonious, but have poor correlation with Taiwanese style/non‐Taiwanese style. The study also reveals several factors affecting colour preference for Taiwanese fabrics, including the interaction effect of colour and pattern, observer's general liking for the object, and the effect of user experience. These findings can help develop a more robust, comprehensive theory of object colour preference. © 2015 Wiley Periodicals, Inc. Col Res Appl, 41, 43–55, 2016  相似文献   

9.
Several studies have recorded color emotions in subjects viewing uniform color (UC) samples. We conduct an experiment to measure and model how these color emotions change when texture is added to the color samples. Using a computer monitor, our subjects arrange samples along four scales: warm–cool, masculine–feminine, hard–soft, and heavy–light. Three sample types of increasing visual complexity are used: UC, grayscale textures, and color textures (CTs). To assess the intraobserver variability, the experiment is repeated after 1 week. Our results show that texture fully determines the responses on the Hard‐Soft scale, and plays a role of decreasing weight for the masculine–feminine, heavy–light, and warm–cool scales. Using some 25,000 observer responses, we derive color emotion functions that predict the group‐averaged scale responses from the samples' color and texture parameters. For UC samples, the accuracy of our functions is significantly higher (average R2 = 0.88) than that of previously reported functions applied to our data. The functions derived for CT samples have an accuracy of R2 = 0.80. We conclude that when textured samples are used in color emotion studies, the psychological responses may be strongly affected by texture. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010  相似文献   

10.
The Technical Committee 1‐86 of the International Commission on Illumination on “Models of colour emotion and harmony” is requesting the submission of datasets for use in developing new models of colour emotion and colour harmony. The data should be submitted to the TC Chair, Dr. Li‐Chen Ou at the National Taiwan University of Science and Technology. © 2012 Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

11.
12.
This study investigates harmony in two‐colour combinations in order to develop a quantitative model. A total of 1431 colour pairs were used as stimuli in a psychophysical experiment for the visual assessment of harmony. These colour pairs were generated using 54 colours selected systematically from CIELAB colour space. During the experiment, observers were presented with colour pairs displayed individually against a medium gray background on a cathode ray tube monitor in a darkened room. Colour harmony was assessed for each colour pair using a 10‐category scale ranging from “extremely harmonious” to “extremely disharmonious.” The experimental results showed a general pattern of two‐colour harmony, from which a quantitative model was developed and principles for creating harmony were derived. This model was tested using an independent psychophysical data set and the results showed satisfactory performance for model prediction. The study also discusses critical issues including the definition of colour harmony, the relationship between harmony and pleasantness, and the relationship between harmony and order in colour. © 2006 Wiley Periodicals, Inc. Col Res Appl, 31, 191–204, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20208  相似文献   

13.
This article suggests a potential scientific approach in finding colour effects on human emotions and seasonal associations. A visual assessment of the colour samples was carried out with the help of Turkish observers in Denizli, Turkey. From the study, it was found that Turkish four season colours of spring, summer, autumn and winter were bright green, vivid yellow, dull yellow and dark grayish brown respectively. Moreover, the colour data were arranged in terms of gender and age of the observers. In this analysis, it was observed that the colour preferences changed according to the gender and age of the observers. For instance, the top spring colour preference of young ladies were vivid bluish green, light blue and bright purple, on the other hand the top spring colour preference of adult ladies was light yellow green and the top spring colour preference of young and adult men was bright green. In the study, the observers were also asked about elicited emotional associations of the main colours on their mind and the data were collected in a table. © 2015 Wiley Periodicals, Inc. Col Res Appl, 41, 523–529, 2016  相似文献   

14.
We studied the individual variability of asymmetric metameric colour matching between computer displays and object colour stimuli in conditions typical for the surface colour industries. Using two different computational techniques, we assessed the contribution of observer metamerism to this variability. In the studied conditions of spatially separated computer display and surface colour stimuli, this contribution was found to be insignificant for all colours but neutrals. In the chromaticness plane, the range of matches made by different observers practically coincides with the range of matches made by an individual observer. Consequently, we conclude that in the task of matching spatially separated display and surface colours, the range of matches made by a group of observers cannot be determined from variations in their colour‐matching functions, and thus the paradigm of the Standard Deviate Observer is shown to be inapplicable to the studied conditions. We suggest that individual variability in these conditions is governed by mechanisms of chromatic discrimination, and can be modeled by advanced colour difference formulae with suitably adjusted parametric coefficients. © 2008 Wiley Periodicals, Inc. Col Res Appl, 33, 346–359, 2008  相似文献   

15.
Light‐emitting diode (LED) technology offers the possibility of obtaining white light, despite narrow‐band spectra. In order to characterize the colour discrimination efficiency of various LED clusters, we designed a classification test, composed of 32 caps equally distributed along the hue circle at about 3 ΔE* ab‐unit intervals. Forty normal colour observers were screened under four different LED test light sources adjusted for best colour rendering, and under one control incandescent light of the same colour temperature. We used commercially available red, green, blue, and/or amber LED clusters. These yielded a poor colour rendering index (CRI). They also induced a significantly higher number of erroneous arrangements than did the control light. Errors are located around greenish‐blue and purplish‐red shades, parallel to the yellow‐axis direction, whereas when the distribution of light covers the full spectrum, the LED clusters achieve satisfactory colour discrimination efficiency. With respect to the lights we tested, the colour discrimination is correlated with the CIE CRIs as well as with a CRI based on our sample colours. We stress the fact that increasing the chroma of samples by lighting does not necessarily imply an improvement of colour discrimination. © 2008 Wiley Periodicals, Inc. Col Res Appl, 34, 8–17, 2009.  相似文献   

16.
In a typical Euclidean three‐dimensional colour space such as CIELAB, the ‘third‐dimension’, such as CIELAB chroma, has long been criticized as being confusing and difficult to understand for naïve observers and it had relatively poor consistency in visual assessments. As an attempt to find a promising replacement to existing ‘third‐dimension’, two psychophysical experiments were conducted in this study using naïve observers. In the first experiment, 24 Korean observers assessed 48 NCS colour chips in terms of bright, light‐heavy, active‐passive, fresh‐stale, clean‐dirty, clear, boring, natural‐not natural, warm‐cool, intense‐weak, saturated, vivid‐dull, distinct‐indistinct, full‐thin and striking. According to experimental results, ‘saturated’ and ‘vivid‐dull’ were found to highly correlate with CIELAB chroma and were thus regarded as good candidates to become alternatives to existing ‘third‐dimension’. In the second experiment, 40 Korean and 68 British observers assessed more than 100 samples in terms of saturation, vividness, blackness and whiteness. Thus, observers assessed 120 samples for saturation, vividness and whiteness. For blackness, 110 samples were assessed. In both experiments, the colour samples were presented in a viewing cabinet and assessed individually. Principal component analysis identified two components that were associated with CIELAB lightness and chroma. In general, there was a similarity between the visual results of the British and Korean observers. High correlation coefficients were found for the following comparisons: predicted values of Berns' depth model versus the present ‘saturation’ response; Berns' clarity versus ‘vividness’ response; Berns' vividness versus ‘blackness’ response; and CIELAB lightness versus ‘whiteness’ response. © 2016 Wiley Periodicals, Inc. Col Res Appl, 42, 203–215, 2017  相似文献   

17.
In recent studies, contextual situations of applied colours are compared to colours presented as samples or chips. Findings of such studies point out different results in terms of similarities or differences between the evaluations of isolated/abstract colours and contextualized situations. Architectural and spatial contexts have their own characteristics regarding colouring criteria, so it is of great importance to examine the architectural/spatial colouring process from this point of view. This study explores this process by investigating the consistency of semantic ratings of four sequential stages of the architectural colour design process, namely, colour chips/samples, abstract compositions, perspective drawings and 3D models. The architectural context for the study was a simple interior space. Fifteen different colour schemes were applied on the four media representing the stages. Subjects rated the 15 sets against seven bipolar, five‐step semantic differential scales. The scales consisted of harmonious‐discord, pleasant‐unpleasant, comfortable‐uncomfortable, spacious‐confined, static‐dynamic, exciting‐calming and extroverted‐introverted. Findings indicated that there are significant associations between the evaluations of the abstract compositions, the perspective drawings and the 3D models; however, the evaluations of colour chips are significantly different than the others. The medium effect observed mostly between abstract and contextualized media. Additionally, factor analysis showed that pleasantness, harmony, spaciousness and comfort are connected in the evaluations of contextual situations, while pleasantness and harmony differ from spaciousness and comfort in the evaluations of colour chips and abstract compositions. The factor of activity (arousal) (dynamism, excitement, and extroversion) stays the same for all four media. It is also found that different colour characteristics are determinative over different media. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010  相似文献   

18.
Individual differences between the 49 Stiles & Burch observers have been analyzed using the object‐colour space put forth recently (J of Vision 2009;9:1–23). A set of rectangular reflectance spectra has been used as a common frame of reference for representing object colours for all the observers. Being metameric to one of these rectangular reflectance spectra, every reflectance spectrum can be geometrically represented as a point in the three‐dimentional space. The interindividual differences reveal themselves in that, for various observers, the same reflectance spectrum maps to different points in this space. It has been found that on average such differences do not exceed the differences in object‐colour appearance induced by an illumination shift from daylight to the fluorescent daylight simulator F1. Such small individual variations have been accounted for by the fact that the cone spectral tuning curves have a special form that mitigates the individual differences in cone spectral positioning. © 2012 Wiley Periodicals, Inc. Col Res Appl, 2013  相似文献   

19.
The aim of this study was to develop psychophysical models that predict the influence of pack colours on consumers' psychological responses of fruit juices, such as visually perceived expectations of freshness, quality, liking, and colour harmony. Two existing colour harmony models derived from experiments involving only uniform colour plaques were tested using the juice packaging experimental data. Both models failed to predict the visual results obtained. Nevertheless, two parameters relevant to chromatic difference and hue difference were somewhat associated with the visual results. This suggested that, among all colour harmony principles for uniform colours, only the equal‐hue and the equal‐chroma principles can be adopted to describe colour harmony of packaging used for juice. This has the implication that the principles of colour harmony may vary according to the context in which the colours are used. A new colour harmony model was developed for juice packaging, and a predictive model of freshness was derived. Both models adopted CIELAB colour attributes of the package colour and the fruit image colour to predict viewers' responses. Expected liking and juice quality can be predicted using the colour harmony model while expected freshness can be predicted using the predictive model of freshness. © 2013 Wiley Periodicals, Inc. Col Res Appl, 40, 157–168, 2015  相似文献   

20.
Popular usage of colour words as parts of speech obey certain rules according to whether they are population dependent and whether use demands a degree of colour vision. The word green refers to that colour most of us see, recognize and categorize as being of the colour called green. But, colours and colour words are to do with emotion as well as perception. What can we learn from the greatest writers, artists and musical composers; how do they, for example, regard green? From them we learn that we perceive colours with our ears as well as our eyes and, in an emotional sense, a colour word means or is associated with just what the writer intends. © 2014 Wiley Periodicals, Inc. Col Res Appl, 40, 111–113, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号