首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we introduce a new draw technique for polymer orientation and apply it to different polymer fibers: poly(ethylene terephthalate) or PET, nylon 6,6, and ultra‐high molecular polyethylene (UHMWPE). In this technique, a polymer is drawn uniaxially in supercritical CO2 using a custom high‐pressure apparatus. This technique can be used in replacement of a traditional drawing process or as a post‐treatment process. With PET, the technique is not effective at temperatures at or below 130°. In contrast, the process is highly effective for nylon 6,6 where CO2 drawn fibers show significantly higher crystallinity and orientation along with improved mechanical properties. While the fibers are plasticized, the drawability of the fibers is only slightly dependent on temperature. High pressure CO2 drawing of ultrahigh molecular weight polyethylene (UHMWPE) fibers is equally effective. Commercial high performance fibers can be drawn up to a ratio of 1.9 in asecond stage, resulting in large increases in tensile modulus and small improvements in tensile strength.  相似文献   

2.
Poly(vinyl alcohol) (PVA) melt‐spun fibers with circular cross‐section and uniform structure, which could support high stretching, were prepared by using water as plasticizer. The effects of water content on drawability, crystallization structure, and mechanical properties of the fibers were studied. The results showed that the maximum draw ratio of PVA fibers decreased with the increase of water content due to the intensive evaporation of excessive water in PVA fibers at high drawing temperature. Hot drying could remove partially the water content in PVA as‐spun fibers, thus reducing the defects caused by the rapid evaporation of water and enhancing the drawability of PVA fibers at high drawing temperature. The decreased water content also improved the orientation and crystallization structure of PVA, thus producing a corresponding enhancement in the mechanical properties of the fibers. When PVA as‐spun fibers with 5 wt % water were drawn at 180 °C, the maximum draw ratio of 11 was obtained and the corresponding tensile strength and modulus reached ~0.9 GPa and 24 GPa, respectively. Further drawing these fibers at 215 °C and thermal treating them at 220 °C for 1.5 min, drawing ratio of 16 times, tensile strength of 1.9 GPa, and modulus of 39.5 GPa were achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45436.  相似文献   

3.
High strength fibers were prepared from high density polyethylene (HDPE)/organically modified montmorillonite (OMMT) composites. X‐ray diffraction study revealed that the composites were of conventional or phase‐separated type. As‐spun composite fibers were found to have higher drawability than as‐spun HDPE fiber. As a result of an increased drawability, fibers with much higher mechanical properties were obtained. The highest modulus and tensile strength obtained in the present study were 38 GPa and 1.7 GPa, respectively. Study of internal morphology suggests that the role of OMMT is to suppress a defect formation and allows the fiber to be drawn to higher draw ratio. Analysis of the mechanical properties of the fibers using a Griffith type relationship suggested that the fibers have much smaller defects and the predicted attainable strength for the fiber is much higher than that previously predicted for melt‐spun and hot drawn fiber. POLYM. ENG. SCI., 47:943–950, 2007. © 2007 Society of Plastics Engineers  相似文献   

4.
A high temperature zone‐drawing method was applied to a nylon 66 microfiber, obtained by using CO2 laser‐thinning, to develop its mechanical properties. The microfiber used for the high temperature zone‐drawing was prepared by winding at 150 m min?1 the microfiber obtained by irradiating the laser at 4.0 W cm?2 to an original fiber with a diameter of 50 μm, and had a diameter of 9.6 μm and a birefringence of 0.019. The high temperature zone‐drawing was carried out in two steps; the first drawing was carried out at a temperature of 230°C at supplying and winding speeds of 0.266 and 0.797 m min?1, the second at 250°C at supplying and winding speeds of 0.266 and 0.425 m min?1, respectively. The diameter of the microfiber decreased, and its birefringence increased stepwise with the processing. The high temperature zone‐drawn microfiber finally obtained had a diameter of 4.2 μm, a birefringence of 0.079, total draw ratio of 4.8, tensile modulus of 12 GPa, and tensile strength of 1.0 GPa. The wide‐angle X‐ray diffraction photograph of the drawn microfiber showed the existence of highly oriented crystallites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 42–47, 2006  相似文献   

5.
Nylon 66 nanofibers were prepared by irradiating as‐spun nylon 66 fibers with radiation from a carbon dioxide (CO2) laser while drawing them at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through the fiber injection orifice. The fiber diameter depended on the drawing conditions used, such as laser power, chamber pressure, laser irradiation point, and fiber supply speed. A nanofiber obtained at a laser power of 20 W and a chamber pressure of 20 kPa had an average diameter of 0.337 μm and a draw ratio of 291,664, and the drawing speed in the CO2 laser supersonic drawing was 486 m s?1. The nanofibers showed two melting peaks at about 257 and 272°C. The lower melting peak is observed at the same temperature as that of the as‐spun fiber, whereas the higher melting peak is about 15°C higher than the lower one. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40015.  相似文献   

6.
Thermotropic liquid crystal polymer (TLCP)/poly(ethylene 2,6‐naphthalate) (PEN) were prepared by a melt blending, and were melt spun by a spin‐draw process. In this study, we suggest novel drawing technology using the CO2 laser that can directly and uniformly heat up fiber inside to prevent the formation of ununiform structures in conventional heat drawing process. The properties of the heat/laser drawn TLCP/PEN blend fibers were superior to those of any other handled fibers, and were rather more excellent than those of TLCP/PEN blend fibers annealed at 135°C for 10 min. It was confirmed that the CO2 laser drawing made it possible to achieve the optimal drawing effect by draw ratio. The combined heating and CO2 laser‐drawing method has a great potential for industrial applications as a novel fiber‐drawing process, and it can also be applied continuously to conventional spin‐draw system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 205–211, 2007  相似文献   

7.
Polyamide 6 (PA6) gels were prepared by the dissolution of PA6 powder in formic acid with CaCl2 as a complexing agent. The concentration of the polymer was 16% w/v. PA6 fibers were obtained through gel‐spinning, drawing, decomplexation, and heat‐setting processes. The structure and properties of the fibers at different stages were characterized with differential scanning calorimetry, thermogravimetric analysis, X‐ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The experiment results indicate that the melting transition of the as‐spun fibers obtained by the extrusion of the PA6/CaCl2/HCOOH solution into a coagulation bath through a die disappeared. A porous structure existed in the as‐spun fibers, which led to poor mechanical properties. Compared with the as‐spun fibers, the melting and glass‐transition temperatures of the decomplexed and drawn fibers retained their original values from PA6, the degree of crystallinity increased, the porous structure disappeared, and the mechanical properties were improved. The maximum modulus and tensile strength obtained from the drawn fibers in this study were 32.3 GPa and 530.5 MPa, respectively, at the maximum draw ratio of 10. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4449–4456, 2013  相似文献   

8.
The drawability of melt‐spun poly(vinyl alcohol) (PVA) fibers and its structure evolution during hot‐drawing process were studied by differential scanning calorimetry (DSC), two dimensional X‐ray diffraction (2‐D WAXD) and dynamic mechanical analysis (DMA). The results showed that the water content of PVA fibers should be controlled before hot‐drawing and the proper drying condition was drying at 200°C for 3 min. PVA fibers with excellent mechanical properties could be obtained by drawing at 200°C and 100 mm/min. The melt point and crystallinity of PVA fibers increased with the draw ratio increasing. The 2‐D WAXD patterns of PVA fibers changed from circular scattering pattern to sharp diffraction point, confirming the change of PVA fibers from random orientation to high degree orientation. Accordingly, the tensile strength of PVA fibers enhanced by hot‐drawing, reaching 1.85 GPa when the draw ratio was 16. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
A detailed study was conducted to investigate the effects of horizontal isothermal bath (hIB) on the production of ultra‐high performance polypropylene filaments. Two different commercial PP polymers were used with the melt flow rate of 4.1 and 36 g/10 min. The optimum process conditions depended on polymer molecular weight. Fibers showed distinct precursor morphology for each at each optimum process condition. However, two sets of filaments demonstrated similar fiber tenacity and modulus of about 7 and 75 g d?1, respectively, for as‐spun and more than 12 g d?1 for tenacity and more than 190 g d?1 for modulus values of drawn fibers after just 1.49 draw ratio. The mean value for the modulus after the drawing process for the high melt flow rate was 196 g d?1. The theoretical modulus of PP is 35–42 GPa19, (275–330 g d?1), shows the hIB fiber's modulus performance is approaching its theoretical maximum value. Fibers had greatly improved thermal properties, degree of crystallinity, crystalline and amorphous orientation factors. The hIB spinning system produced highly oriented and predominantly amorphous structure for as‐spun fibers and a well‐defined, highly oriented crystalline fibrillar and amorphous structure after drawing process with the draw ratios lower than 1.5. POLYM. ENG. SCI., 55:327–339, 2015. © 2014 Society of Plastics Engineers  相似文献   

10.
Melt‐spun poly(trimethylene terephthalate) (PTT) fibers were zone‐drawn and the structures and properties of the fibers were investigated in consideration of the spinning and zone‐drawing conditions. The draw ratio increased up to 4 with increasing drawing temperature to 180°C, at a maximum drawing stress of 220 MPa. Higher take‐up velocity gave lower drawability of the fiber. The PTT fiber taken up at 4000 rpm was hardly drawn, in spite of using maximum drawing stress, because a high degree of orientation had been achieved in the spinning procedure. However, an additional enhancement of birefringence was observed, indicating a further orientation of PTT molecules by zone drawing. The exotherm peak at 60°C disappeared and was shifted to a lower temperature with an increase in the take‐up velocity, which means that the orientation and crystallinity of the fiber increased. The d‐spacing of (002) plane increased with increasing take‐up velocity and draw ratio, whereas those of (010) and (001) planes decreased. In all cases, the crystal size increased with take‐up velocity and draw ratio. The cold‐drawn PTT fiber revealed a kink band structure, which disappeared as the drawing temperature was raised. The physical properties of zone‐drawn PTT fibers were improved as the draw ratio and take‐up velocity increased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3471–3480, 2001  相似文献   

11.
Polyamide 6 (PA 6) filaments with initial modulus around 48 GPa were produced by dry spinning from low mole ratio (MR) complex of calcium chloride and high molecular weight PA 6 (CaCl2‐PA 6) in formic acid. From the results of XRD, DSC, FTIR, and SEM, the complexation of CaCl2‐PA 6 in the MR range of 0.15–0.3 was efficient. The spinnability of the complex solution was excellent, which allowed a maximum draw ratio of 14.4 for as‐spun fibers. After decomplexing and annealing, the birefringence of drawn fiber could reach around 0.08. Porous structure was found in fibers spun from formic acid‐chloroform cosolvent but not observed by using pure formic acid. When MR of CaCl2/PA 6 exceeded 0.3, some irregular particles formed on the fiber surface due to the recrystallization of CaCl2. However, fibers with smooth surface could be obtained when the MR decreased to 0.15. During the process of decomplexing in ethyl alcohol, an axial shrinkage of drawn fibers in a relaxed state was observed. It turned out that this shrinkage could be avoided by decompexing the fibers under tension. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
High-strength poly(vinyl alcohol) (PVA) fiber was obtained by the crosslinking wet-spinning technique, which is an improved technique of the conventional non-crosslinked type wet-spinning of PVA. High tensile strength as well as high Young's modulus was achieved by introduction of the borate ion-aided crosslinks during the coagulation process. The drawability of the as-spun fiber greatly depends on the fiber thickness. The thinner the fiber, the higher the drawability. Since thinner fiber is subject to a very high shear rate on extrusion, the crosslinks introduced are believed to maintain topological memory of the oriented chains, which have a low density of entanglements. This allows drawing the fiber to a higher draw ratio. The strength and Young's modulus of the resultant highly drawn PVA fiber were achieved to be 22 g/d (2.3 GPa) and 430 g/d (50 GPa), respectively. The mechanism of the spinning was discussed and the spinning condition was carefully examined in order to optimize the final mechanical properties of the PVA fibers.  相似文献   

13.
M. Afshari  D. Jung  R. Kotek  A.E. Tonelli 《Polymer》2008,49(5):1297-1304
A nylon 6,6 complex with GaCl3 in nitromethane (4-5 wt% nylon 6,6) was prepared at 50-70 °C over 24 h for the purpose of disrupting the interchain hydrogen bonding between nylon 6,6 chains, resulting in amorphous nylon 6,6, and increasing the draw ratio for improving the performance of nylon 6,6 fibers. After drawing, complexed films and fibers were soaked in water to remove GaCl3 and regenerate pure nylon 6,6 films and fibers. FTIR, SEM, DSC, TGA, and mechanical properties were used for characterization of the regenerated nylon 6,6 films and fibers. The amorphous complexed nylon 6,6 can be stretched to high draw ratios at low strain rates, due to the absence of hydrogen bonding and crystallinity in these complexed samples. Draw ratios of 7-13 can be achieved for complexed fibers, under low strain rate stretching. This study indicates that nylon 6,6 fibers made from the GaCl3 complexed state, using a high molecular weight polymer, can reach initial moduli up to 13 GPa, compared to initial moduli of 6 GPa for commercial nylon 6,6 fibers. Lewis acid-base complexation of polyamides provides a way to temporarily suppress hydrogen bonding, potentially increasing orientation while drawing, and following regeneration of hydrogen bonding in the drawn state, to impart higher performance to their fibers.  相似文献   

14.
The production of high modulus and high strength poly(ethylene terephthalate) fibers was examined by using commercially available melt‐spun fibers with normal molecular weight (intrinsic viscosity = 0.6 dL/g). First, molecular weight of as‐spun fibers was increased up to 2.20 dL/g by a solid‐state polymerization, keeping the original shape of as‐spun fibers. Second, the polymerized as‐spun fibers were drawn by a conventional tensile drawing. The achieved tensile modulus and strength of as‐drawn fibers (without heat setting) were 20.0 and 1.1 GPa, respectively. A heat setting was carried out for the as‐drawn fibers. Tensile properties of the treated fibers were greatly affected by the condition of the heat setting. This was related to the increase of sample crystallinity and molecular degradation during the treatments. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1791–1797, 2007  相似文献   

15.
Polyamide 6 (PA6) fibers were prepared by CaCl2 complexation and the gel spinning technique. PA6 was partially complexed with CaCl2 for the purpose of suppressing interchain amide group hydrogen bonding. The fibers were characterized with scanning electron microscopy, X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. In the gel spinning process, a mixed tetrachloroethane and chloroform solution was chosen as the coagulation bath after a comparison of different types of solutions. From our investigation of the morphology, structure, and mechanical properties of gel‐spun and hot‐drawn fibers, it was indicated that the modulus and tensile strength increased with increasing draw ratio, the orientation of the fibers was improved, and the cross section of the PA6 gel fibers became more smooth and tight. The results from the XRD, DSC, and FTIR tests indicated that calcium metal cations complexed with the carbonyl oxygen atoms of PA6. The maximum modulus and tensile strength values obtained in this study were 28.8 GPa and 413 MPa, respectively, at a draw ratio of 8. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
The influence of drawing on the limiting draw ratio upon formation of the morphological structure of fibers spun from binary polypropylene (PP) blends was studied. Fibers were spun from a fiber‐grade CR‐polymer and from the blends of a fiber‐grade CR‐polymer with a molding‐grade polymer in the composition range of 10–50 wt % added. As‐spun fibers were immediately moderately and additionally highly drawn at the temperature of 145°C. The structure and morphology of these fibers were investigated by small‐angle X‐ray scattering, wide‐angle X‐ray scattering, differential scanning calorimetry, scanning electron microscopy, density, birefringence, and sound velocity measurements. It was shown that continuously moderately drawn fibers are suitable precursors for the production of high tenacity PP fibers of very high modulus, because of so called oriented “smectic” structure present in these fibers. With drawing at elevated temperature, the initial metastable structure of low crystallinity was disrupted and a c‐axis orientation of monoclinic crystalline modification was developed. Hot drawing increased the size of crystallites and crystallinity degree, the orientation of crystalline domains, and average orientation of the macromolecular chains and resulted in extensive fibrillation and void formation. It was found that the blend composition has some influence on the structure of discontinuously highly drawn fibers. With increasing the content of the molding‐grade polymer in the blend, the size of crystalline and amorphous domains, density and crystallinity, as well as amorphous orientation decreased. Relationship has been established between the mechanical properties, crystallinity, and orientation of PP fibers. It was confirmed that by blending the fiber‐grade CR‐polymer by a small percentage of the molding‐grade polymer, maximization of elastic modulus is achieved, mainly because of higher orientation of amorphous domains. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1067–1082, 2006  相似文献   

17.
The effects of melt spinning and cold drawing on structure development and resulting properties of poly (aryl ether ketone) (PAEK) have been investigated. Melt spun and subsequently cold drawn fibers were characterized by differential scanning calorimetry, wide angle X-ray diffraction, small angle X-ray diffraction, and birefringence techniques. At low take-up speeds, essentially amorphous fibers are produced. High take-up speeds result in development of crystallinity in the as-spun fibers. Cold drawing above the, Tg of PAEK causes further increase of crystallinity. Wide angle X-ray patterns indicate progressive alignment of chains along the fiber axis in as spun as well as in cold-drawn fibers with the draw down ratio and cold draw ratio. However, cold drawing was observed to broaden the WAXS peaks. SAXS patterns of cold drawn and fixed annealed fibers changed from two-point to four-point patterns indicating mosaic pattern formation of crystalline and amorphous regions. Mechanical properties including tensile strength, elongation at break, modulus, and yield strength were measured and correlated with fiber structure. Fracture surfaces of tensile tested fibers were observed using scanning electron microscopy and correlated with developed fiber structure.  相似文献   

18.
Daisuke Sawai 《Polymer》2006,47(12):4445-4453
The uniaxial drawing of UHMW-PAN fibers spun from a dilute solution into methanol coagulation baths at different temperatures and the resultant structure and tensile properties of the drawn products were studied. Although the initial morphology of the fibers and the deformation mode in a lower draw ratio (DRt) range were significantly dependent on the temperatures of the coagulation bath, the tensile properties at a given DRt, as well as the maximum achieved ones, were comparable. Both the tensile modulus and strength increased steadily with the DRt and reached 35 and 1.8 GPa, respectively, at the highest DRt of ∼80. These tensile properties are among the highest ever reported for PAN fibers. The achievement of such high tensile properties for extremely drawn fibers is ascribed to the conformational changes of crystalline chains from the 3/1 helix to the planar-zigzag with increasing DRt, the improvement in the uniformity of the fiber diameter along the fiber axis, and the decrease in fiber diameter. Indeed, the tensile strength of fibers prepared from a dilute solution and having comparable moduli increased with a decrease in the fiber diameters. The reciprocal of the strength was proportional to the square root of the diameter as suggested by the Griffith theory. Extrapolation to a zero diameter yielded an ultimate tensile strength of 2.4±0.1 GPa for a fiber having a maximum achieved tensile modulus of 35±1 GPa.  相似文献   

19.
The continuous production of ultra‐high‐molecular‐weight polyethylene (UHMWPE) filaments was studied by the direct roll forming of nascent reactor powders followed by subsequent multistage orientation drawing below their melting points. The UHMWPE reactor powders used in this study were prepared by the polymerization of ethylene in the presence of soluble magnesium complexes, and they exhibited high yield even at low reaction temperatures. The unique, microporous powder morphology contributed to the successful compaction of the UHMWPE powders into coherent tapes below their melting temperatures. The small‐angle X‐ray scattering study of the compacted tapes revealed that folded‐chain crystals with a relatively long‐range order were formed during the compaction and were transformed into extended‐chain crystals as the draw ratio increased. Our results also reveal that the drawability and tensile and thermal properties of the filaments depended sensitively on both the polymerization and solid‐state processing conditions. The fiber drawn to a total draw ratio of 90 in the study had a tensile strength of 2.5 GPa and a tensile modulus of 130 GPa. Finally, the solid‐state drawn UHMWPE filaments were treated with O2 plasma, and the enhancement of the interfacial shear strength by the surface treatment is presented. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 718–730, 2005  相似文献   

20.
High‐strength and porous ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers have been prepared through a two‐stage drawing process. Combined with tensile testing, scanning electron microscopy, and small‐angle X‐ray scattering, the mechanical properties, porosity, and microstructural evolution of the UHMWPE fibers were investigated. The first‐stage cold drawing of the gel‐spun fibers and subsequent extraction process produced fibers with oriented lamellae stacks on the surface and plentiful voids inside but with poor mechanical properties. The second‐stage hot drawing of the extracted fibers significantly improved the mechanical properties of the porous fibers because of the formation of lamellar backbone networks on the surface and microfibrillar networks interwoven inside to support the voids. With various processing conditions, the optimized mechanical properties and porosity of the prepared UHMWPE fibers were obtained a tensile strength of 1.31 GPa, a modulus of 10.1 GPa, and a porosity of 35%. In addition, a molecular schematic diagram is proposed to describe structural development under two‐stage drawing, including void formation and lamellar evolution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42823.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号