首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Drying curves for sugar beet pulp were obtained in a laboratory-scale air drier. Dehydration conditions were: temperatures in the range of 35 to 90 °C, air flow velocities of 0.5 to 2.0 m/s, and air moisture content of 0.005 to 0.06 kg water/kg air. Using data from thin layer experiments, a mathematical model was derived to describe the dehydration behaviour under the described conditions. The model was able to predict data obtained from deep bed experiments. Results from this work could be used to develop a design methodology for dryers that operate at relatively low temperatures (<90°C).  相似文献   

2.
Drying kinetic curves and modelling for cassava chips were determined using a pilot-size air dryer. Operating conditions involved temperatures ranging from 35 to 90 ° C, air flow velocities from 0.5 to 2.0 m/ s, and air moisture content from 0.005 to 0.060 kg water/ kg dry air. Sorption isotherms at temperatures of 23, 45 and 60 ° C were obtained. Results for the drying experiments can be used to calculate the optimal drying conditions for dehydration of cassava roots in multilayers  相似文献   

3.
The effect of water blanching treatment and the inlet air temperature on drying kinetics as well as the quality attributes of carrot cubes dried in a spout–fluidized bed dryer at 60, 70, 80, and 90°C were analyzed. The material shrinkage and the rehydration potential were calculated to assess the changes in quality of dried carrots. It was found that the value of the air velocity during the drying of carrot cubes in a spout–fluidized bed dryer should be related to the moisture content of the carrot particles. A high value of air velocity at the beginning of the drying cycle and a lower value for the later stages were also required. The linear equation was correlated to the data of shrinkage of raw and blanched carrots. Blanching significantly influenced the coefficients in the shrinkage model derived for drying of carrot cubes in a spout–fluidized bed dryer, while drying temperature did not influence the shrinkage of carrot particles. The intensity of heat and mass transfer during spout–fluidized drying of carrot cubes was dependent on the drying temperature. A correlation was developed to calculate the values of effective moisture diffusivity of dried carrot cubes as a function of the moisture content and temperature of the material. It was observed that for any given time of rehydration, both the moisture content and the rehydration ratio calculated for samples dried at 60°C were higher than for samples dried at temperatures of 60, 70, 80, and 90°C.  相似文献   

4.
ABSTRACT

Drying of diced carrot in a vibrofluidized bed was studied experimentally for various air temperatures, bed heights and size of the cubes. Effect of a tempering period that mav be implemented into ¦ drying cycle was examined with respect to drying kinetics and energy consumption. Although two stage drying with a tempering period increases the overall drying time, it shortens the drying time in a VFB dryer thus reduces energy consumption  相似文献   

5.
In this study both static and recurrent artificial neural networks (ANNs) were used to predict the energy and exergy of carrot cubes during fluidized bed drying. Drying experiments were conducted at air temperatures of 50, 60, and 70°C; bed depths of 3, 6, and 9 cm; and square-cubed carrot dimensions of 4, 7, and 10 mm. Five hundred eighteen patterns, obtained from experiments, were used to develop the ANN models. Initially, a static ANN was applied to correlate the outputs (energy and exergy of carrot cubes) to the four exogenous inputs (drying time, drying air temperature, carrot cube size, and bed depth). In the recurrent ANNs, in addition to the four exogenous inputs, two state inputs and outputs (energy and exergy of carrot cubes) were used. To find optimum ANN models, various numbers of hidden neurons were investigated. The energy and exergy of carrot cubes were predicted with R 2 values of greater than 0.95 and 0.97 using static and recurrent ANNs, respectively. Accordingly, the optimal recurrent model could be utilized for determining the appropriate drying conditions of carrot cubes to reach the optimal energy efficiency in fluidized bed drying.  相似文献   

6.
In the present study, a pilot scale microwave assisted fluidized-bed dryer was designed and used to dry apple cubes. A model was developed to describe heat and mass transfer in apple cubes during drying in a combined microwave-assisted fluidized-bed dryer. A numerical solution based on the finite difference method was used to develop the model for moisture distribution and temperature variation of samples. The model was validated using experimental data, including average moisture content, center and surface temperature at various air temperatures and microwave power densities.  相似文献   

7.
A batch fluidized bed dryer was carried out for corn drying. Drying characteristics of corn were investigated The experimental results indicated that moisture transfer inside a corn kernel was controlled by internal diffusion by the following conditions : inlet hot air temperatures of 120 - 200 °C, superficial air velocities of 2.2- 4 m/s, bed depths of 4 - 12 cm, fraction of air recycled of 0.5 -0.9 and initial moisture content of corn of 43 % dry-basis. The Wang and Sing equation could describe in accordance with the results. Inlet hot air temperature and specific air flow rate were independent variables for drying constant model in the Wang and Singh equation.  相似文献   

8.
ABSTRACT

Drying kinetic curves and modelling for cassava chips were determined using a pilot-size air dryer. Operating conditions involved temperatures ranging from 35 to 90 ° C, air flow velocities from 0.5 to 2.0 m/ s, and air moisture content from 0.005 to 0.060 kg water/ kg dry air. Sorption isotherms at temperatures of 23, 45 and 60 ° C were obtained. Results for the drying experiments can be used to calculate the optimal drying conditions for dehydration of cassava roots in multilayers  相似文献   

9.
Drying tests for pine sawdust and mackerel press-cake with hot air and with superheated steam were carried out in a pilot impingement cylindrical dryer. Wet particles move axially along the dryer, adjusting the inclination of the equipment, whereas hot gases circulate in cross-flow against the particles, forming a corotational impingement front. Feed rate and residence time of solids were studied experimentally as a function of dryer inclination for hot air and superheated steam as drying media. Drying rates and heat and mass transfer coefficients were found to increase at shorter residence times and higher gas temperatures. Dried mackerel press-cake with superheated steam resulted in a product with high moisture removal and very low losses of the valuable omega-3 fatty acids.  相似文献   

10.
《Drying Technology》2008,26(3):290-298
Drying tests for pine sawdust and mackerel press-cake with hot air and with superheated steam were carried out in a pilot impingement cylindrical dryer. Wet particles move axially along the dryer, adjusting the inclination of the equipment, whereas hot gases circulate in cross-flow against the particles, forming a corotational impingement front. Feed rate and residence time of solids were studied experimentally as a function of dryer inclination for hot air and superheated steam as drying media. Drying rates and heat and mass transfer coefficients were found to increase at shorter residence times and higher gas temperatures. Dried mackerel press-cake with superheated steam resulted in a product with high moisture removal and very low losses of the valuable omega-3 fatty acids.  相似文献   

11.
《Drying Technology》2013,31(7):1419-1434
ABSTRACT

Drying of porous solids was experimentally investigated in superheated steam as well as in air. Drying rate curves, including critical moisture contents, in steam at subatmospheric pressure, were compared to those for air at atmospheric pressure; moreover, they were compared to those for steam at atmospheric pressure as well. The former comparison was carried out under conditions of sample temperatures of 41.8–42.5°C (which were nearly equal to saturation temperatures of 42.1–42.2°C at pressures of 8.23–8.30 kPa) for the constant rate period in steam and the corresponding sample temperatures of 42.0–45.0°C (which were close to the wet-bulb temperatures) for the constant rate period in air. There were distinct differences between normalized drying rate curves, including critical moisture contents in steam and in air at the above similar sample temperatures for materials of baked clay, firebrick, and cemented glass balloons over the minimum value of 8.3 × 10?3 µm and up to the maximum value of 1.2 × 102 µm in cumulative pore-size distributions: longer constant rate periods and lower critical moisture contents in steam than in air, and higher drying rates in steam than in air for the falling rate period. Moreover, the latter comparison of the drying rates in steam at subatmospheric pressure to those in steam at atmospheric pressure revealed that the differences in normalized drying rates between subatmospheric pressure and atmospheric pressure were small for both materials under mild external conditions. These findings were common to the baked clay, firebrick, and cemented glass balloons over a wide range of pore-size distributions studied in the present work, as well as sintered coarse glass beads as previously reported.  相似文献   

12.
Air drying characteristics and moisture diffusivity of carrots   总被引:1,自引:0,他引:1  
The effects of air temperature on drying kinetics of carrot cubes were investigated. Convective drying characteristics of carrot cubes in a spout-fluidized bed were evaluated through the effect of air temperature on drying kinetics. Drying was carried out at 60, 70, 80 and 90 °C and the falling drying rate data were used to calculate the effective diffusion coefficients from the Fick's equation. Four mathematical models available in the literature were fitted to the experimental data. The Two-term model is given better prediction than the Henderson and Pabis, Page and Lewis model and satisfactorily described drying characteristics of carrot cubes.  相似文献   

13.
Drying of porous solids was experimentally investigated in superheated steam as well as in air. Drying rate curves, including critical moisture contents, in steam at subatmospheric pressure, were compared to those for air at atmospheric pressure; moreover, they were compared to those for steam at atmospheric pressure as well. The former comparison was carried out under conditions of sample temperatures of 41.8-42.5°C (which were nearly equal to saturation temperatures of 42.1-42.2°C at pressures of 8.23-8.30 kPa) for the constant rate period in steam and the corresponding sample temperatures of 42.0-45.0°C (which were close to the wet-bulb temperatures) for the constant rate period in air. There were distinct differences between normalized drying rate curves, including critical moisture contents in steam and in air at the above similar sample temperatures for materials of baked clay, firebrick, and cemented glass balloons over the minimum value of 8.3 × 10-3 µm and up to the maximum value of 1.2 × 102 µm in cumulative pore-size distributions: longer constant rate periods and lower critical moisture contents in steam than in air, and higher drying rates in steam than in air for the falling rate period. Moreover, the latter comparison of the drying rates in steam at subatmospheric pressure to those in steam at atmospheric pressure revealed that the differences in normalized drying rates between subatmospheric pressure and atmospheric pressure were small for both materials under mild external conditions. These findings were common to the baked clay, firebrick, and cemented glass balloons over a wide range of pore-size distributions studied in the present work, as well as sintered coarse glass beads as previously reported.  相似文献   

14.
Desorption isotherms for shrimp were determined at the temperatures of 50, 60, 70 and 80°C. Amongst the moisture equilibrium predictions between the BET and GAB models, the latter has a better predictable capability. The GAB parameters are correlated with the temperatures by the Arrhenius expression. Drying characteristics of shrimp in drying media at the temperature range of 120-180°C for superheated steam and of 70-140°C for hot air have been examined. Drying rate and effective diffusion coefficient are used to quantify quantitatively the difference between the superheated steam and the hot air dryings. The temperature is more important effect on drying rate and effective diffusion coefficient in the superheated steam than in the hot air. Inversion temperature exists between 140 and 150°C. Comparing to the hot air, the shrimp dried by the superheated steam shows a lower degree of shrimp shrinkage. In addition, product colours are slightly different to those from the commercial sources.  相似文献   

15.
The effects of kiln-drying process variables on drying time and final moisture content (MC) variability were assessed using a mathematical drying model (a kiln-wide model) developed earlier. Drying time was predicted to decrease by using higher air velocities and temperatures and, to a less extent, by increasing fan reversal frequencies. The drying time extended as board thickness or stack width increased. Increase in air velocity from 5 to 8 m/s tended to minimize the final MC variability. At least three reversals in the early stages of drying were required to reduce final moisture contents variation. The final MC variability increased with increasing stack width and with increasing temperature.  相似文献   

16.
The effects of kiln-drying process variables on drying time and final moisture content (MC) variability were assessed using a mathematical drying model (a kiln-wide model) developed earlier. Drying time was predicted to decrease by using higher air velocities and temperatures and, to a less extent, by increasing fan reversal frequencies. The drying time extended as board thickness or stack width increased. Increase in air velocity from 5 to 8 m/s tended to minimize the final MC variability. At least three reversals in the early stages of drying were required to reduce final moisture contents variation. The final MC variability increased with increasing stack width and with increasing temperature.  相似文献   

17.
ABSTRACT

A batch fluidized bed dryer was carried out for corn drying. Drying characteristics of corn were investigated The experimental results indicated that moisture transfer inside a corn kernel was controlled by internal diffusion by the following conditions : inlet hot air temperatures of 120 - 200 °C, superficial air velocities of 2.2- 4 m/s, bed depths of 4 - 12 cm, fraction of air recycled of 0.5 -0.9 and initial moisture content of corn of 43 % dry-basis. The Wang and Sing equation could describe in accordance with the results. Inlet hot air temperature and specific air flow rate were independent variables for drying constant model in the Wang and Singh equation.  相似文献   

18.
Long- and medium-grain rice were dried in a commercial multi-stage concurrent-flow dryer. Drying air temperatures varied fran 82°C to 177°C. Over six points of moisture were removed in one dryer pass without affecting the rice head-yield. Energy consumption of the dryers was half that of conventional rice dryers. Simulation played a major role in the design of the mUlti-stage concurrent-flow rice dryers.  相似文献   

19.
Drying of wheat (Algerian cultivar: Hadba03) in thin layers was studied and mass flux phenomenon was used to characterize the thin-layer drying process. Thin-layer drying of wheat was determined for drying air temperature range of 40–60°C, relative humidity of drying air from 10 to 30%, air velocity of 0.7 m/s, and initial grain moisture from 26 to 31% (dry basis). Equilibrium moisture content of wheat was determined using desorption isotherms obtained from the thin-layer drying data. An equilibrium model for a stationary deep bed with drying air moving vertically upward was developed using mass and energy balance between grain and drying air in the bed and drying air characteristics obtained from thin-layer drying experiments. The developed model was validated by drying wheat in a laboratory dryer using different drying air temperatures and initial moisture contents.  相似文献   

20.
Drying of microbial cells for storage purposes is a widely practised technology. A new statistical model is proposed for survivability of microbial cells during convective air drying, where mortality is predicted by hazard functions and acceleration factors applied to temperature, moisture content and drying rate variables. The model is based on experimental survivability data generated from drying Penicillium bilaiae conidia at temperatures from 20 to 60°C and air relative humidities from 3 to 75%. Experimental data using “one at a time” variable manipulation was used to obtain five model parameters. Despite several simplifications to reduce the number of variable cross‐dependencies, the model was successfully validated using combined stress trials with maximum deviations of ±15%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号