首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Finely dispersed blends of polyamide 6 (PA‐6) and poly(ethylene terephthalate) (PET) were obtained by direct injection molding throughout the full composition range. The blends comprised a probably pure PA‐6 phase, and a PET phase that was apparently pure in PET‐rich blends and contained slight reacted PA‐6 amounts in PA‐6‐rich blends. This very complex morphology was characterized by the presence of dispersed particles at three levels and by a very large interface area/dispersed phase volume ratio. The linear ductility behavior was attributed to both the presence of reacted copolymers and the large interface area/dispersed volume ratio, and the synergism in both the Young's modulus and yield stress to the increased orientation of the blends related to that of the pure components. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 564–574, 2005  相似文献   

2.
Polyamide‐6,6 (PA)/poly(ethylene terephthalate) (PET) blends were obtained by direct injection molding over the whole composition range. Besides the two crystalline phases, the blends were composed of a pure amorphous PET phase, and a probably pure PA amorphous phase. The crystallinity of PA and PET did not change in the blends, although PA nucleated the crystallization of PET. The morphological heterogeneity was low because, although large particles were seen, they mostly contained many small (typically 0.3 μm) occlusions. This fairly homogeneous structure is attributed to the reactions observed during melt blending. The Young's modulus and yield stress of the blends followed the rule of mixtures, in good agreement with the lack of change of the crystallinity content, specific volume and orientation of the two components of the blends when they are mixed. The ductility values were also very close to those predicted by the rule of mixtures, with an absolute synergism in the 10/90 blend indicating compatibility. This positive mechanical behavior contrasts with that observed in previous works, and is attributed to the way PET crystallizes, to the highly dispersed morphology, and to the highly amorphous character of the blends obtained in this study. The ductile nature of the blends after annealing at either 80°C for one day or 100°C for 30 min indicated the considerable temperature resistance of these highly dispersed and partially reacted blends. Polym. Eng. Sci. 44:1405–1413, 2004. © 2004 Society of Plastics Engineers.  相似文献   

3.
Blends of poly(sulfone of bisphenol A) (PSU) with poly(butylene terephthalate) (PBT) were obtained by direct injection moulding across the composition range. The two components of the blends reacted slightly in the melt state, producing linear copolymers. The slight changes observed in the two glass transition temperatures indicate that the copolymers were present in the two amorphous phases of the blends. The observed reactions and the high viscosity of the matrix of the PSU‐rich compositions led to a very fine morphology which could not be attained in the PBT‐rich compositions due to the low viscosity of the matrix and the direct injection moulding procedure used. This procedure is fast and economically advantageous, but leads to poor mixing. The different morphologies influenced neither the modulus nor the yield stress, which tended to follow the rule of mixtures. However, the low fracture properties of the PBT‐rich compositions contrasted with the ductility behaviour, and even the impact strength of the PSU‐rich blends, which also tended to be proportional to the blend composition. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
This article deals with the structure and mechanical properties of blends of an amorphous copolyester (PCTG) and an amorphous polyamide (aPA) which were directly prepared during the plasticization step of an injection molding process. The blends were composed by an almost pure aPA phase, and a PCTG‐rich phase where some aPA subparticles are present. The morphology of the blends showed both rather fine dispersed particles and occasionally large particles with occluded subparticles. This complex morphology indicated a low interface tension attributed to the presence of some aPA in the PCTG‐rich phase of the blends. The almost linear behavior of the modulus of elasticity was attributed to the constancy of the main structural characteristics upon blending and the equally linear ductility to the good adhesion level and the presence of thin and elongated morphologies. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40785.  相似文献   

5.
Immiscible blends of recycled poly(ethylene terephthalate) (R‐PET), containing some amount of polymeric impurities, and high‐density polyethylene (R‐PE), containing admixture of other polyolefins, in weight compositions of 75 : 25 and 25 : 75 were compatibilized with selected compatibilizers: maleated styrene–ethylene/butylene–styrene block copolymer (SEBS‐g‐MA) and ethylene–glycidyl methacrylate copolymer (EGMA). The efficiency of compatibilization was investigated as a function of the compatibilizer content. The rheological properties, phase structure, thermal, and viscoelastic behavior for compatibilized and binary blends were studied. The results are discussed in terms of phase morphology and interfacial adhesion among components. It was shown that the addition of the compatibilizer to R‐PET‐rich blends and R‐PE‐rich blends increases the melt viscosity of these systems above the level characteristic for the respective binary blends. The dispersion of the minor phase improved with increasing compatibilizer content, and the largest effects were observed for blends compatibilized with EGMA. Calorimetric studies indicated that the presence of a compatibilizer had a slight affect on the crystallization behavior of the blends. The dynamic mechanical analysis provided evidence that the occurrence of interactions of the compatibilizer with blend components occurs through temperature shift and intensity change of a β‐relaxation process of the PET component. An analysis of the loss spectra behavior suggests that the optimal concentration of the compatibilizers in the considered blends is close to 5 wt %. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1423–1436, 2001  相似文献   

6.
The morphology development of polypropylene (PP)/polyethylene terephthalate (PET)/styrene‐ethylene‐butylene‐styrene (SEBS) ternary blends and their fibers were studied by means of scanning electron microscopy (SEM) in conjunction with the melt linear viscoelastic measurements. The morphology of the blends was also predicted by using Harkin's spreading coefficient approach. The samples varying in composition with PP as the major phase and PET and SEBS as the minor phases were considered. Although SEM of the binary blends showed matrix‐dispersed type morphology, the ternary blend samples exhibited a morphological feature in which the dispersed phase formed aggregates consisting of both PET and SEBS particles distributed in the PP matrix. The SEM of the blend samples containing 30 and 40 wt % of total dispersed phase showed an agglomerated structure formed between the aggregates. The SEM of the PP/PET binary fiber blends showed long well‐oriented microfibrils of PET whereas in the ternary blends, the microfibrils were found to have lower aspect ratio with a fraction of the SEBS stuck on the microfibril fracture surfaces. These results were attributed to a core‐shell type morphology in which the PET and SEBS formed the core‐shells distributed in the matrix. The melt viscoelastic behavior of the ternary blends containing less than 30 wt % of the total dispersed phase was found to be similar to the matrix and binary blend samples whereas the samples containing 30 and 40 wt % of dispersed phases exhibited a pronounced viscosity upturn and nonterminal storage modulus in low frequency range. These results were found to be in good agreement with the morphological results. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Blends of bisphenol A polycarbonate (PC) and polyamide 6,6 (PA6,6) were prepared directly during the plasticization step of an injection molding process in an attempt to attain both (i) the reinforcement of the blends through fibrillar morphology, and (ii) an adequate compatibilization despite the short processing procedure used. Differential scanning calorimetry and dynamic‐mechanical analysis indicated that the blends were made up of a PC‐rich phase where some PA6,6 was present and, ruling out a possible degradation, of an almost pure PA6,6‐phase. The cryogenically fractured surfaces observed by scanning electron microscopy showed both rather fine particles and larger particles with occluded subparticles. This complex morphology indicates low interphase tension and, therefore, compatibilization, which can be attributed to the presence of PA6,6 in the two phases of the blends. The values of Young's modulus, determined by means of tensile tests, were always synergistic and, in the case of the 25/75 blend, the modulus was even higher than those of any of the two pure components. It appears this could be due to both the highly fibrillar morphology of the dispersed phase, and the significant decrease observed in specific volume. The blends remained ductile throughout the full composition range, which also indicates compatibilization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Mechanical properties such as the tensile modulus, yield (break) strength, and elongation to break (or yield) are measured for multiphase poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) blends. Specimens with three different levels of thermal histories (quenched, as‐molded, and annealed) are prepared in order to study their effects on the mechanical properties of PEEK/PES blends. Synergistic behavior is observed in the tensile modulus and tensile strength of the blends in almost the whole range of compositions. The ductility of quenched blends measured as the elongation to break (yield) shows an unexpected synergistic behavior in the blend containing 90 wt % PEEK, although a negative deviation from additive behavior is observed in the rest of the compositions. A ductile–brittle transition is observed between 50 and 75 wt % PEEK in the blend. The ductile–brittle transition in as‐molded blends shifts to 75–90 wt % PEEK. Annealed blends show predominantly brittle behavior in the whole composition range. The experimental data are further correlated with the theoretically predicted results based on various composite models. Although the prediction based on these equations fails to fit the experimental data in the whole composition range, the simplex equations that are normally used for blends showing synergistic behavior produced a reasonable fit to the experimental data. The mechanical properties obtained for different blend compositions are further correlated with their morphology as observed by scanning electron microscopy. Morphological observation shows a two‐phase morphology in PES‐rich blends, which is an interlocked morphology in which the disperse phase is not clearly visible in PEEK‐rich blends, and a cocontinuous type of morphology for a 50/50 composition. Considerable permanent deformation of both the disperse and matrix phase, especially in the case of quenched tensile specimens, demonstrates the remarkable adhesion present between the two phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2887–2905, 2003  相似文献   

9.
Compatibilized poly(ether imide)/amorphous polyamide (PEI/a‐PA) blends were obtained in the melt state by substitution of 20% PEI by poly(ethylene terephthalate), PET. The two amorphous phases of the blends comprised both a miscibilized 80/20 PEI/PET blend and an a‐PA‐rich phase in which small amounts of PET and probably PEI were present. The presence of PET in the two phases of most of the blends was the main reason for the clear decrease in the particle size that indicated compatibilization. The smaller interfacial tension of the blends after PET addition also proved that compatibilization had occurred. The deviation of the modulus with respect to the direct rule of mixtures was positive in PEI‐rich blends and negative in the blends very rich in a‐PA. The modulus values were tentatively attributed to a different orientation of the components of the blends in the blends and in the neat state. The clear increases in ductility and the impact strength after PET addition further demonstrated the compatibilization effect of PET. POLYM. ENG. SCI., 46: 1292–1298, 2006. © 2006 Society of Plastics Engineers  相似文献   

10.
In the present work, attempts were made to investigate the thermal and mechanical properties of melt‐processed poly(ethylene terephthalate) (PET)/poly(ethylene 2,6‐naphthalate) (PEN) blends and its nanocomposites containing graphene by using differential scanning calorimetry and tensile test experimenting. The results showed that crystallinity, which depends on a blend ratio, completely disappeared in a composition of 50/50. By introducing graphene to PET, even in low concentrations, the crystallinity of samples increased, while the nanocomposite of PEN indicated reverse behavior, and the crystallinity was reduced by adding graphene. In the case of PET‐rich (75/25) nanocomposite blends, by increasing the nano content in the blend, the crystallinity of the samples was enhanced. This behavior was attributed to the nucleating effect of graphene particles in the samples. From the results of mechanical experiments, it was found in PET‐rich blends that by increasing the PEN/PET ratio, the modulus of samples decreased, whereas in the case of PEN‐rich blends, a slight increment of modulus is seen as a result of the increment of the PEN/PET ratio. The two contradicting behaviors were attributed to the reduction of crystallinity of PET‐rich blends by enhancement of PEN/PET ratio and the rigid structure of PEN chains in PEN‐rich blends. Unlike the different modulus change of PET‐rich and PEN‐rich blends, the nanocomposites of these blends similarly indicated an increment of modulus and characteristics of rigid materials by increasing the nano content. Furthermore, the same behavior was detected in nanocomposites of each polymer (PET and PEN nanocomposites). The alteration from ductile to rigid conduction was related to the impedance in the role of graphene plates against the flexibility of polymer chains and high values of graphene modulus. J. VINYL ADDIT. TECHNOL., 23:210–218, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
The miscibility and crystallization behavior of poly(ethylene oxide)/poly(vinyl alcohol) (PEO/PVA) blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and polarizing optical microscopy. Because the glass‐transition temperature of PVA was near the melting point of PEO crystalline, an uncommon DSC procedure was used to determine the glass‐transition temperature of the PVA‐rich phase. From the DSC and DMA results, two glass‐transition temperatures, which corresponded to the PEO‐rich phase and the PVA‐rich phase, were observed. It was an important criterion to indicate that a blend was immiscible. It was also found that the preparation method of samples influenced the morphology and crystallization behaviors of PEO/PVA blends. The domain size of the disperse phase (PVA‐rich) for the solution‐cast blends was much larger than that for the coprecipitated blends. The crystallinity, spherulitic morphology, and isothermal crystallization behavior of PEO in the solution‐cast blends were similar to those of the neat PEO. On the contrary, these properties in the coprecipitated blends were different from those of the neat PEO. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1562–1568, 2004  相似文献   

12.
Amorphous polyamide (AP)/liquid crystalline polyester (VA) blends were obtained by extrusion‐injection molding (EI) throughout the whole composition range. The phase behavior, chemical nature and morphology of the blends were studied, and the mechanical properties discussed and compared with those of the 10 and 30% VA blends obtained by direct injection molding (DI). The blends showed two almost pure slightly reacted amorphous phases. The apparently higher reaction level of the EI blends, although small, led to a more homogeneous, fine and fibrillated morphology, attributed to a lower interfacial tension. Significant synergisms in the modulus of elasticity (up to 25%) and in the tensile strength (up to 40%) were seen in EI blends. The similar values of both specific volume and orientation in the blends and in the pure components suggest that the contribution to the modulus of the dispersed VA rigid particles is greater than that due to the proportion of VA in the blend. The 10% VA DI blend showed a similar behavior in these two properties, indicating that the DI procedure is preferred, provided that only stress‐related properties are sought. At 30% VA content, the moduli of elasticity were similar by the two molding processes, but the clearly lower tensile strength and lower ductility of the easier DI procedure, means that the more complex, but more effective, EI procedure is the one of choice for high performance materials.  相似文献   

13.
Immiscible blends of poly(ethylene terephthalate) (PET)/polyethylene (PE) and polycarbonate (PC)/PE were examined to study the influence of the high interfacial contact (pseudo‐adhesion) on the mechanical properties and the morphology developed during elongation. The high interfacial contact resulted from the contraction difference of the two polymers during cooling from the processing temperature to room temperature. As a result of the pseudo‐adhesion, the tensile strength and modulus of the PET/PE and PC/PE blends increased steadily with the increase of PET and PC concentration. In PC/PE blends, numerous PC microfibers were formed in‐situ, while in PET/PE blends, slippage took place between the PET particles and the matrix. Moreover, the macroscopic morphology development of both blends upon elongation was quite different. For PET/PE blend, necking was initiated at one point close to the non‐gate end of the specimen, and then propagated uniformly from this point. For the PC/PE blend, necking‐initating sites and propagation were irregular, and consequently the whole tested zone was deformed. The recoil of partially elongated specimens indicated that the recoverability of the PC/PE blend is higher than that of the PET/PE blend. Polym. Eng. Sci. 44:1561–1570, 2004. © 2004 Society of Plastics Engineers.  相似文献   

14.
The article deals with method of preparation, rheological properties, phase structure, and morphology of binary blend of poly(ethylene terephthalate) (PET)/poly(butylene terephthalate) (PBT) and ternary blends of polypropylene (PP)/(PET/PBT). The ternary blend of PET/PBT (PES) containing 30 wt % of PP is used as a final polymer additive (FPA) for blending with PP and subsequent spinning. In addition commercial montane (polyester) wax Licowax E (LiE) was used as a compatibilizer for spinning process enhancement. The PP/PES blend fibers containing 8 wt % of polyester as dispersed phase were prepared in a two‐step procedure: preparation of FPA using laboratory twin‐screw extruder and spinning of the PP/PES blend fibers after blending PP and FPA, using a laboratory spinning equipment. DSC analysis was used for investigation of the phase structure of the PES components and selected blends. Finally, the mechanical properties of the blend fibers were analyzed. It has been found that viscosity of the PET/PBT blends is strongly influenced by the presence of the major component. In addition, the major component suppresses crystallinity of the minor component phase up to a concentration of 30 wt %. PBT as major component in dispersed PES phase increases viscosity of the PET/PBT blend melts and increases the tensile strength of the PP/PES blend fibers. The impact of the compatibilizer on the uniformity of phase dispersion of PP/PES blend fibers was demonstrated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4222–4227, 2006  相似文献   

15.
In this study binary and ternary blends of polylactide (PLA), polycaprolactone (PCL) and thermoplastic starch (TPS) are prepared using a one-step extrusion process and the morphology, rheology and physical properties are examined. The morphology and quantitative image analysis of the 50/50 PLA/TPS blend transverse phase size demonstrate a bimodal distribution and the addition of PCL to form a ternary blend results in a substantial number of fine dispersed particles present in the system. Focused ion beam irradiation, followed by atomic force microscopy (AFM) shows that dispersed PCL forms particles with a size of 370 nm in PLA. The TPS phase in the ternary blends shows some low level coalescence after a subsequent shaping operation. Dynamic mechanical analysis indicates that the temperature of the tan δ peak for the PLA is independent of TPS blend composition and that the addition of PCL in the ternary blend has little influence on the blend transitions. Both the α and β transitions for the thermoplastic starch are highly sensitive to glycerol content. When TPS of high glycerol content is blended with PLA, an increase in the ductility of the samples is achieved and this effect increases with increasing volume fraction of TPS. The ternary blend results in an even greater ductility with an elongation at break of 55% as compared to 5% for the pure PLA. A substantial increase in the notched Izod impact energy is also observed with some blends demonstrating three times the impact energy of pure PLA. The mechanical properties for the ternary blend clearly indicate a synergistic effect that exceeds the results obtained for any of the binary pairs. Overall, the ternary blend approach with PLA/TPS/PCL is an interesting technique to expand the property range of PLA materials.  相似文献   

16.
The curing behaviour, chemorheology, morphology and dynamic mechanical properties of epoxy ? polyphenylene oxide (PPO) blends were investigated over a wide range of compositions. Two bisphenol A based di‐epoxides ? pure and oligomeric DGEBA ? were used and their cure with primary, tertiary and quaternary amines was studied. 4,4′‐methylenebis(3‐chloro‐2,6‐diethylaniline) (MCDEA) showed high levels of cure and gave the highest exotherm peak temperature, and so was chosen for blending studies. Similarly pure DGEBA was selected for blending due to its slower reaction rate because of the absence of accelerating hydroxyl groups. For the PPO:DGEBA340/MCDEA system, the reaction rate was reduced with increasing PPO content due to a dilution effect but the heat of reaction were not significantly affected. The rheological behaviour during cure indicated that phase separation occurred prior to gelation, followed by vitrification. The times for phase separation, gelation and vitrification increased with higher PPO levels due to a reduction in the rate of polymerization. Dynamic mechanical thermal analysis of PPO:DGEBA340/MCDEA clearly showed two glass transitions due to the presence of phase separated regions where the lower Tg corresponded to an epoxy‐rich phase and the higher Tg represented the PPO‐rich phase. SEM observations of the cured PPO:DGEBA340/MCDEA blends revealed PPO particles in an epoxy matrix for blends with 10 wt% PPO, co‐continuous morphology for the blend with 30 wt% PPO and epoxy‐rich particles dispersed in a PPO‐rich matrix for 40wt% and more PPO. © 2014 Society of Chemical Industry  相似文献   

17.
To evaluate the compatibilization effects of an isocyanate group on poly(ethylene terephthalate)/polypropylene (PET/PP) blends through a reactive blend, PP grafted with 2‐hydroxyethyl methacrylate‐isophorone diisocyanate (PP‐g‐HI) was prepared and blended with PET. In view of the blend morphology, the presence of PP‐g‐HI reduced the particle size of the dispersed phase by the reduced interfacial tension between the PP and PET phases, indicating the in situ copolymer (PP‐g‐PET) generated during the melt blending. The DSC thermograms for the cooling run indicated that the PET crystallization in the PP‐g‐HI rich phase was affected by the chemical reactions of PET and PP‐g‐HI. The improved mechanical properties for the PET/PP‐g‐HI blends were shown in the measurement of the tensile and flexural properties. In addition, the water absorption test indicated that the PET/PP‐g‐HI blend was more effective than the PET/PP blend in improving the water resistance of PET. The positive properties of PET/PP‐g‐HI blends stemmed from the improved compatibilization of the PET/PP blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1056–1062, 2001  相似文献   

18.
Blends of 75/25 poly(ethylene terephthalate) (PET)/high density polyethylene (HDPE) containing poly(ethylene‐co‐methacrylic acid) partially neutralized with lithium (PEMA‐Li) were obtained by direct injection molding in an attempt (i) to ameliorate the poor performance of the binary blend and (ii) to find the best compatibilizer content. The presence of PEMA‐Li caused a nucleation effect on PET, and a decrease in the crystalline content of HDPE. The compatibilizing effect of PEMA‐Li was due to the combined effects of interaction at the interface and chemical reactions. The ternary blends showed a complex morphology, with two dispersed HDPE and PEMA‐Li phases that contained a small internal dispersed phase, probably of PET. The compatibilizing effect of PEMA‐Li was clearly shown by means of an impressive increase in the ductility and to a minor extent in the impact strength. The highest property improvement (ductility increase 1450%) appeared upon the addition of 45% PEMA‐Li with respect to the HDPE phase, but taking into account the recycling interest, the ternary blend with the addition of roughly 22.5% PEMA‐Li appears to be the most attractive.  相似文献   

19.
The morphology of PET/PC/E‐GMA‐MA blends made by different mixing sequences was studied by transmission electron microscopy (TEM). The results suggest that migration of the E‐GMA‐MA copolymer from the PET phase to the PC phase occurred during the mixing of the (PET/E‐GMA‐MA) pre‐blend with the PC at 10% copolymer content. As a result of the migration, the E‐GMA‐MA particles are located in the PC phase rather than in the PET phase. This finding is not in agreement with the prediction made previously by others based on the possible reaction between the epoxy group of GMA and carboxyl group of PET. Core‐shell (PC/E‐GMA‐MA) particles formed in situ during blending and the size of the core‐shell particles was controlled by the blending sequence used. Mechanical properties of the ternary blends were tested at various temperatures. Although the blending sequence does not have a noticeable effect on the yield strength and modulus of the blends, it has a strong influence on the morphology formed, which determines the impact toughness. For blends made under optimum processing conditions, the brittle‐ductile transition occurred at a lower temperature and lower elastomer content. A study of the toughening mechanism suggested that the major toughening events were cavitation plus matrix shear yielding. It is postulated that the very high impact toughness found with the (PC/E‐GMA‐MA)/PET blend (at 10% E‐GMA‐MA) originated from the bimodal particle size distribution of the core‐shell particles formed in situ.  相似文献   

20.
Immiscible polymer blends are interesting multiphase host systems for fillers. Such systems exhibit, within a certain composition limits, either a separate dispersion of the two minor phases or a dispersion of encapsulated filler particles within the minor polymer phase. Both thermodynamic (e.g. interfacial tension) and kinetic (e.g. relative viscosity) considerations determine the morphology developed during the blending process. The effect of interfacial characteristics on the structure‐property relationships of ternary polymer alloys and blends comprising polypropylene (PP), ethylene‐vinyl alcohol copolymer (EVOH) and glass beads (GB), or fibers (GF), was investigated. The system studied was based on a binary PP/EVOH immiscible blend, representing a blend of a semi‐crystalline apolar polymer with a semicrystalline highly polar copolymer. Modification of the interfacial properties was obtained through using silane coupling agents for the EVOH/glass interface and compatibilization using a maleic anhydride grafted PP (MA‐g‐PP) for the PP/EVOH interface. The compatibilizer was added in a procedure aimed to preserves the encapsulated EVOH/glass structure. Blends were prepared by melt extrusion compounding and specimens by injection molding. The morphology was characterized using scanning electron microscopy (SEM) and high resolution SEM (HRSEM), the shear viscosity by capillary rheometry and the thermal behavior using differential scanning calorimetry (DSC). The system studied consisted of filler particles encapsulated by EVOH, with some of the minor EVOH component separately dispersed within the PP matrix. Modification of the interfaces resulted in unique morphologies. The aminosilane glass surface treatment enhanced the encapsulation in the ternary [PP/EVOH]GB blends, resulting in an encapsulated morphology with no separtely dispersed EVOH particles. The addition of a MA‐g‐PP compatibilizer preserves the encapsulated morphology in the ternary blends with some finely dispersed EVOH particles and enhanced PP/EVOH interphase interactions. The viscosity of the binary and ternary blends was closely related to the blend's morphology and the level of shear rate. The treated glass surfaces showed increased viscosity compared to the cleaned glass surfaces in both GB and GF containing ternary blends. Both EVOH and glass serve as nucleating agents for the PP matrix, affecting its crystallization process but not its crystalline structure. The aminosilane glass surface treatment completely inhibited the EVOH crystallization process in the ternary blend. In summary, the structure of the multicomponent blends studied has a significant effect on their behavior as depicted by the rheological and thermal behavior. The structure‐performance relationships in the three‐component blends can be controlled and varied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号