首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The main aim of this study was to compare two microspheres, chitosan (CTS) and CTS/β‐cyclodextrin (β‐CD), made by spray‐drying, as pulmonary sustained drug‐delivery carriers. Theophylline (TH) was used as a model drug. The characteristics of the microspheres and in vitro release were studied. The yield of CTS/β‐CD microspheres was 46.1%, which was higher than that of the CTS microspheres (36.5%). The drug loads of the CTS and CTS/β‐CD microspheres were 22.7 and 21.1%, respectively, whereas the encapsulation efficiencies were 90.7 and 91.4%, respectively. The distribution of 50% [(diameter) d (0.5)] of the CTS microspheres was below 6.49 μm and that of the CTS/β‐CD microspheres was below 4.90 μm. Scanning electron microscopy showed that both microspheres yielded a spherical shape with smooth or wrinkled surfaces. Fourier transform infrared spectroscopy demonstrated that the carbonyl group of TH formed hydrogen bonds with the amide group of CTS and the hydroxyl group of β‐CD. The swelling ability of the two microspheres was more than three times their weight, and their humidity rates attained equilibrium within 24 h. The ciliary beat movement times of CTS and CTS/β‐CD microspheres were 493.00 and 512.33 min, respectively, which indicated that the two microspheres effectively reduced the ciliotoxicity and possessed better adaptability. In vitro release of TH from CTS/β‐CD microspheres was slower than that from CTS microspheres at pH 6.8 and provided a sustained release of 72.0% within 12 h. The results suggest that CTS/β‐CD microspheres are a promising carrier for sustained release for pulmonary delivery. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1183–1190, 2007  相似文献   

2.
A β‐cyclodextrin derivative grafted chitosan (CDD‐C) was synthesized with chitosan and carboxymethyl‐β‐cyclodextrin (β‐CD). Its structure was characterized by elemental, infrared spectra, and X‐ray diffraction analyses. The degree of substitution by the carboxymethyl‐β‐CD moiety achieved 0.27 with the addition of DMF to the reaction solution. The results are in agreement with the expectations. The static adsorption properties for guanosine, cytidine, and uridine were studied. Experimental results demonstrated that CDD‐C had higher adsorption capability for guanosine than cytidine and uridine, and the adsorption capacity for guanosine was 74.20 mg/g. The adsorption capacity was greatly influenced by pH, time, and temperature. The introduction of chitosan enhanced the adsorption ability and adsorption selectivity of β‐CD for guanosine. This novel derivative of chitosan is expected to have wide applications in separation, concentration, and analysis of guanosine, cytidine, and uridine in biological sample. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3050–3055, 2007  相似文献   

3.
BACKGROUND: Adsorption of puerarin on native resin polystyrene (PS) and oligo‐β‐cyclodextrin‐coupled matrix (PS‐CDP) was studied for interactions between the adsorbents and the adsorbates. The sorption mechanism on PS‐CDP was investigated using the isosteric heat approach and nuclear magnetic resonance (NMR) spectroscopy. RESULTS: The equilibrium adsorption data of puerarin on the two matrices PS and PS‐CDP (polystyrene‐based matrix before and after coupling by oligo‐β‐cyclodextrin) in the temperature range 288–318 K were well fitted to the Freundlich adsorption isotherm model. The energetic heterogeneity of the media was observed based on the result that the values of isosteric enthalpy were quantitatively correlated with the fractional loading of puerarin adsorption. The more heterogeneous surface of PS‐CDP compared with PS was attributed to the complexation between puerarin and β‐cyclodextrin (β‐CD). NMR studies validated the formation of an inclusion complex puerarin/β‐CD. CONCLUSION: Thermodynamic and NMR studies confirmed that multi‐interaction cooperatively governed the isolation of puerarin from aqueous solution on PS‐CDP matrix. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
In this study, β‐cyclodextrin (β‐CD) was covalently grafted on hydroxyapatite (HA) using a coupling agent to improve the drug loading capacity and prolong the drug release. The binding of β‐CD on the HA surface was confirmed by Fourier transformation infrared spectroscopy, thermal gravimetric analysis, and X‐ray powder diffraction. The adsorption capacity of ofloxacin on β‐CD‐grafted hydroxyapatite (β‐CD‐g‐HA) composite was found to be 30 mg g?1 at 37°C and 24 h. The adsorption process is spontaneous, given the negative values of free energy change. Compared with the release of ofloxacin loaded on HA, the release of ofloxacin loaded on β‐CD‐g‐HA was slowed down 28% and 21% in pH 2.0 and pH 7.4 buffer media at 2 h, respectively. Biocompatibility of β‐CD‐g‐HA was assessed by MTT assay, and the result showed that it had no cytotoxicity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
A novel ion‐imprinted polymer (IIP) using (6‐O‐butene diacid ester)‐β‐cyclodextrin (β‐CD‐MAH) as the functional monomer and copper ions as the template was developed for Cu2+ sensing. First, reactive β‐cyclodextrin (β‐CD) monomers with vinyl carboxylic acid functional groups were synthesised and were co‐polymerised with styrene via radical polymerisation. Then, the β‐CD copolymers were complexed with Cu2+ in order to obtain the IIP. The imprinting effect was realised by removing the template ions from the imprinted polymer. The structure, composition and morphology of the IIP were characterised by Fourier transform IR spectroscopy, energy‐dispersive spectroscopy and field‐emission SEM. The adsorption capacity was investigated by UV–visible spectroscopy in batch operation mode. The maximum adsorption capacity for the Cu2+ template ions was 28.91 mg g?1, and the adsorption selectivity was clearly illustrated from the increased sorption affinity towards Cu2+ ions over other competing ions. The adsorption was affected by the pH of the aqueous medium, and enhanced adsorption capacity was observed at pH 5. The prepared IIP could be used 10 times after its regeneration without significant loss of the adsorption capacity. © 2018 Society of Chemical Industry  相似文献   

6.
Attachment of β‐cyclodextrin (β‐CD) molecules on cotton textile provides hosting cavities that can include a large variety of guest molecules for specific functionality. Five different new and existing techniques were evaluated for connecting β‐CD and its derivatives to cotton surface. A comparison has been made in terms of maximum attachment of β‐CD on cotton surface. Novel chemical based crosslinking with homo‐bi‐functional reactive dye (C.I. reactive black 5) and grafting with reactive monochlorotriazinyl‐β‐cyclodextrin show maximum attachment to cotton surface. Innovative, enzymatic coupling of especially synthesized 6‐monodeoxy‐6‐mono(N‐tyrosinyl)‐β‐cyclodextrin was performed on cotton textile surface. Enzymatic coupling was also carried out in a homogeneous system and attachment confirmed by UV–vis spectroscopy. This tyrosinase mediated coupling is low temperature and very specific technique. A phenolphthalein based analytical method was partially modified to reliably measure the amount of attached β‐CD on cotton surface. Atomic force microscopy and scanning electron microscopy techniques were used for surface characterization of the treated and untreated cotton surfaces. Alteration in surface topography has been observed for β‐CD treated samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Surfactant adsorption onto solid surfaces is a major issue during surfactant flooding in enhanced oil recovery applications; it decreases the effectiveness of the chemical injection making the process uneconomical. Therefore, it was hypothesized that the adsorption of surfactant onto solid surfaces could be inhibited using a surfactant delivery system based on the complexation between the hydrophobic tail of anionic surfactants and β‐cyclodextrin (β‐CD). Proton nuclear magnetic resonance spectroscopy was used to confirm the complexation of sodium dodecyl sulfate (SDS)/β‐CD. Surface tension analysis was used to establish the stoichiometry of the complexation and the binding constant (Ka). Static adsorption testing was applied to determine the adsorption of surfactant onto different solids (sandstone, shale, and kaolinite). The release of the surfactant from the β‐CD cavity was qualitatively evaluated through bottle testing. The formation of the inclusion complex SDS/β‐CD with a 1:1 stoichiometry was confirmed. The Ka of the complexations increases as salinity and hardness concentration increases. The encapsulation of the surfactant into the β‐CD cavity decreases the adsorption of surfactant onto solid surfaces up to 79 %. Qualitative observations indicate that in the presence of solid adsorbents partially saturated with crude oil, the β‐CD cavity releases surfactant molecules, which migrate towards the oil–water interface.  相似文献   

8.
A novel insoluble bimodal porous polymer containing β‐cyclodextrin (β‐CD) was prepared to adsorb aromatic amine compound. The process involved copolymerization of styrene and methyl methacrylate with a maleic acid derivative of β‐CD, subsequently, above formed copolymer was foamed by supercritical CO2. The chemical properties and physical structure of obtained copolymer was analyzed using Fourier transform infrared spectra, Thermal gravimetric analysis, X‐ray diffraction, scanning electron microscope, and N2 adsorption techniques. The inclusion adsorption of aromatic amine compounds on β‐CD copolymer was carried out in a batch system. The quantities of aromatic amine compounds adsorbed on β‐CD copolymer reached equilibrium within 60 min. The adsorption kinetic could be fitted to a pseudo‐second‐order kinetic equation, and the linear correlation coefficients varied from 0.9828 to 0.9935. With the influence of molecular structure and hydrophobicity of the aromatic amine compound, the sequence of quantity of aromatic amine compounds adsorbed on β‐CD copolymer is p‐toluidine > aniline > benzidine > o‐toluidine. The adsorption equilibrium data of aromatic amine compound adsorbed on β‐CD copolymer were fitted to Freundlich and Langmuir models, respectively. The linear correlation coefficients of Langmuir model varied from 0.9516 to 0.9940, and the linear correlation coefficients of Freundlich varied from 0.9752 to 0.9976. It is concluded that Freundlich model fits better than Langmuir model, because the adsorption of aromatic amine compound on β‐CD copolymer is a chemical process. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
β‐Cyclodextrin microspheres (β‐CDMs) were prepared and then bonded to guar gum (GG). The structures of the precursor material and product were characterized by X‐ray diffraction and Fourier transform infrared spectroscopy. Phenolphthalein and spectrophotometry were used to determine the content of β‐cyclodextrin (β‐CD) in products. By changing environmental conditions and types of adsorbents, the adsorption capacities of polymers on basic fuchsine were studied. The results indicate that the absorption capacity was decreased accordingly when the pH value was reduced. The increase of temperature had no obvious influence on improving the absorption capacity from 40 to 60°C. When the mass ratio of chloropropyl hydroxyl GG to β‐CDMs to sodium carbonate was 0.6 : 0.8 : 1.0, with the reaction time of 2 h, the best adsorption capacity of 24 mg/g was achieved; this was in accordance with the results of the measurement of the content of β‐CD in the products. The higher content of β‐CDM was beneficial for improving the absorption capacity. By comparing its properties with the absorption capacity of traditional flocculating agents polyacrylamide and polaluminum chloride, the best absorption results for GG bonded with β‐CDMs were obtained. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Three environment friendly β‐cyclodextrin polymer electrorheological (ER) particles (NS‐β‐CDP, WSS‐β‐CDP, and CLS‐β‐CDP) were synthesized by copolymerization through a mixture of β‐cyclodextrin (β‐CD) and epichlorohydrin in the absence of starch or in the presence of water‐soluble and water‐insoluble starch, respectively. The electrorheological properties of suspensions in silicone oil were then investigated under direct current (dc) electric fields. It was found that the yield stress of the typical WSS‐β‐CDP ER fluid was 6.2 kPa in 4 kV/mm, which is 35% higher than that of NS‐β‐CDP and similar to that of CLS‐β‐CDP. In the meantime, it can display a high ER performance even over a range of 65–95°C. The structures of these polymers were characterized by FT‐IR and Raman spectrometry, respectively. The results demonstrated that all of these polymers keep the original structural character of β‐CD and the copolymerizations between starch and β‐CD indeed occur. Furthermore, it was found that there was some relationship between the characteristic strength of polymers and their dielectric properties. Hence, the improvement of copolymer dielectric properties resulted in the enhancement of ER effects. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1681–1686, 2004  相似文献   

11.
Surfactant adsorption onto solid surfaces is problematic in some industrial processes, such as in surfactant flooding for enhanced oil recovery. In this work, it was hypothesized that the use of a surfactant delivery system could prevent surfactant adsorption onto solid surfaces. Therefore, the encapsulation of sodium dodecyl sulfate (SDS) into the hydrophobic core of β‐cyclodextrin (β‐CD) to generate a surfactant delivery system (SDS/β‐CD) was evaluated in this work. This complexation was characterized using optical and scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT‐IR). Dynamic adsorption evaluation was applied to determine the effectiveness of the complexation in inhibiting surfactant adsorption onto a variety of solid adsorbents including sand, and mixtures of sand–kaolin and sand–shale. Surfactant adsorption was also evaluated applying the quartz crystal microbalance technology (QCM‐D). The formation and morphology of the complexation was confirmed by optical microscopy, SEM, and FT‐IR. Dynamic adsorption tests demonstrated the effectiveness of the surfactant delivery approach in preventing the adsorption of surfactant (up to 74 % adsorption reduction). The QCM‐D technology confirmed these observations. Several mechanisms were proposed to explain the inhibition of surfactant adsorption including steric hindrance, self‐association of inclusion complexes, hydrophilicity increase, and disruption of hemimicelles formation.  相似文献   

12.
The inclusion complex formed by β‐cyclodextrin (β‐CD) with the cationic surfactant hexadecyltrimethylammonium chloride (HTAC) was studied by viscometry using poly(ethylene oxide) (PEO)–HTAC aggregates as a viscosity indicator. The relative viscosity of β‐CD in aqueous PEO–HTAC solution profiles shows that the formation of the β‐CD/HTAC inclusion complex causes HTAC molecules to be stripped off the PEO chains, resulting in a decrease of aqueous solution viscosity as a result of the decrease in electrostatic repulsion between polymer‐bound HTAC micelles. The viscosity minimum at Cβ‐CD/CHTAC = 0.5 indicates that the molecular ratio of host molecule to guest molecule is 1:2 in the β‐CD/HTAC inclusion complex.  相似文献   

13.
Hydrophobically modified chitosan containing β‐cyclodextrin (CD) units was synthesized by using tosylated β‐CD. The final product was characterized by Fourier transform infrared (FTIR) spectroscopy, elemental analysis and TGA, and rheometry. The polymer bearing β‐CD moieties was used to obtain crosslinked microparticles by spray‐drying which could then be used in a controlled release system for drugs. FTIR confirmed the formation of an amide linkage between cyclodextrin and chitosan. As fluorescence spectroscopy demonstrated, hydrophobic microenvironments were formed by chitosan bearing cyclodextrin in solution at lower concentrations than for chitosan. Rheometry and FTIR showed the crosslinking of the new polymer using genipin, a molecule of natural origin. Microspheres (MS) obtained by spray‐drying showed narrow size distribution when β‐CD was grafted onto chitosan and ξ‐potential of MS was slightly lower although it remained positive. In conclusion, β‐CD linked chitosan polymer can be considered as a very promising controlled drug delivery system for drugs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Hydrogel/silver nanocomposites have shown immense potential in many biological applications. In this article, a facile method to synthesize poly(acrylamide‐co‐(β‐cyclodextrin))/silver nanocomposites is reported. The silver nanoparticles were in situ synthesized accompanying with the formation of poly(acrylamide‐co‐(β‐cyclodextrin)) hydrogel by gamma irradiation without additional reducing and stabilizing agents. In addition, the nanocomposites were prepared under ambient conditions. The formation of silver nanoparticles was confirmed by ultraviolet used to characterize the structure and composition of the synthetic nanocomposites. Transmission electron microscope verified the formation and homogeneous distribution of silver nanoparticles in the hydrogel matrix. The hybrid hydrogel exhibited excellent water‐swelling properties, which could be controlled by varying the mass ratio of acrylamide (AM) to β‐cyclodextrin (β‐CD) in the hydrogel. Furthermore, the poly(acrylamide‐co‐(β‐cyclodextrin))/silver nanocomposites were found to be effective in inhibiting the growth of both Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus. POLYM. COMPOS., 37:1480–1487, 2016. © 2014 Society of Plastics Engineers  相似文献   

15.
Fluorescent 2‐naphthol (NOH)‐containing β‐cyclodextrin (β‐CD)–epichlorohydrin (EP) copolymers were synthesized. Polymerization was confirmed through viscosity and FT‐IR spectroscopic measurements. Under certain conditions, the copolymers were water‐soluble (molar ratio of EP/β‐CD <22:1), while under other conditions water‐insoluble gels were formed (EP/β‐CD ≥ 22:1). Increase of the EP content to EP/β‐CD ≤ 39:1 increased the fluorescence intensity of the copolymer and shifted the emission maximum from 422 nm toward 352 nm (measured at pH ≥ 12). Further increases in the EP content resulted in a slight decrease in the fluorescence intensity. The fluorescence properties of our system at EP/β‐CD < 22 were sensitive to pH variation, while at EP/β‐CD ≥ 22 no pH effect was observed. These variations can be explained in terms of the exposure of the fluorophore to solvent in soluble versus insoluble polymers, as well as changes in the mode of association (host–guest complexation, trapping within the polymer network, covalent bonding, etc) of NOH with the polymers. Crystallographic studies on a single crystal grown in the absence of EP, but under basic conditions, suggest that host–guest complexation is not an important mode for NOH incorporation. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
Based on a combination of poly(N‐isopropylacrylamide), which could respond to an external temperature, and β‐cyclodextrin (β‐CD), which could form a molecular inclusion complex, a novel hydrogel, having both thermal and pH sensitivities and containing β‐CD and N‐isopropylacrylamide (NIPA) segments, was synthesized. For the incorporation of β‐CD into the polymer network, a macromonomer was prepared first by the reaction of a β‐CD‐based polymer with maleic anhydride in dimethylformamide and then by copolymerization with NIPA in an aqueous solution. Elemental analysis, IR spectroscopy, differential scanning calorimetry, and swelling measurements were employed for the characterization of the hydrogel chain structure and its physical properties. With methyl orange as a model compound in inclusion tests, it was found that the hydrogel not only possessed a remarkable supramolecular inclusion ability (with respect to that of the small molecule cyclodextrin) but also could sensitively respond to various external stimuli, including the temperature, pH, and ionic strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 361–367, 2003  相似文献   

17.
A novel highly active β‐nucleating agent, β‐cyclodextrin complex with lanthanum (β‐CD‐MAH‐La), was introduced to isotactic polypropylene (iPP). Its influence on isothermal crystallization and melting behavior of iPP was investigated by differential scanning calorimeter (DSC), wide‐angle X‐ray diffraction (WAXD), and polarized light microscopy (PLM). WAXD results demonstrated that β‐CD‐MAH‐La was an effective β‐nucleating agent, with β‐crystal content of iPP being strongly influenced by the content of β‐CD‐MAH‐La and the isothermal crystallization temperature. The isothermal crystallization kinetics of pure iPP and iPP/β‐CD‐MAH‐La was described appropriately by Avrami equation, and results revealed that β‐CD‐MAH‐La promoted heterogeneous nucleation and accelerated the crystallization of iPP. In addition, the equilibrium melting temperature (T) of samples was determined using linear and nonlinear Hoffman‐Weeks procedure. Finally, the Lauritzen‐Hoffman secondary nucleation theory was applied to calculate the nucleation parameter (Kg) and the fold surface energy (σe), the value of which verify that the addition of β‐CD‐MAH‐La reduced the creation of new surface for β‐crystal and then led to faster crystallization rate. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
To chemically bond β‐cyclodextrin (β‐CD), which can form inclusion complexes, acrylamidomethyl CD (CD–NMA) obtained from the acid‐catalyzed reaction of N‐methylolacrylamide (NMA) and β‐CD was grafted onto cellulose fibers using CeIV as the initiator. The double‐bond content of CD–NMA increased with increase in the NMA/CD mol ratio, and a CD–NMA containing a maximum of three molecules of NMA bonded to a CD molecule could be obtained. Since the grafting condition is acidic, the hydrolytic stability of CD–NMA in aqueous nitric acid was studied. The temperature of hydrolysis proved to have a greater effect on the depletion of double bonds from CD–NMA compared with the concentration of the acid. Thus, CD–NMA was grafted onto cellulose fibers at a low temperature, and FTIR analysis of the CD–NMA‐grafted cotton fibers confirmed the chemical bonding of CD–NMA molecules to cellulose. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 438–446, 2001  相似文献   

19.
A novel linear water‐soluble β‐cyclodextrin polymer has been prepared by grafting β‐cyclodextrin on poly[(methyl vinyl ether)‐alt‐(maleic anhydride)]. First, lithium hydride was used to obtain the mono‐alkoxide β‐CD. Grafting of β‐CD derivatives to the polymer backbone was then carried out by an esterification method. Using this method, polymers containing various amounts of β‐CD were synthesized. The resulting grafted polymers were characterized by two complementary methods, 1H NMR and IR spectroscopy. The first was used to calculate the degree of substitution for the low amounts of β‐CD. The second method was very useful to evaluate the degree of substitution and the molar ratio of CD especially for high amounts of grafting. Our results indicate good agreement between both methods for intermediate rates. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
To evaluate molecular recognition function of β‐cyclodextrin to xylene isomers, β‐CD polymer of branching chain extension (β‐CD‐EGDE) was synthesized by crosslinking β‐CD with ethylene glycol diglycidyl ether (EGDE). The pervaporation blend membranes of β‐CD‐EGDE/PVA were prepared by casting an aqueous solution of PVA and β‐CD polymer mixture, and the membranes were used for separation of p‐/m‐ and p‐/o‐xylene mixtures. It was observed that the pristine PVA membrane almost had no selectivity for xylene isomer mixtures. The PVA membrane incorporating β‐CD polymer had molecular recognition function, which selectively facilitated the transport of the xylene isomers. To ascertain pervaporation behavior, the sorption and desorption processes of the membrane in xylenes were investigated. The sorption result showed that the complex formation constant between β‐CDs and xylenes played a key role in swelling behavior. There was a significant difference between diffusion coefficients D and D0, calculated from the sorption and desorption measurements, respectively, indicating that the diffusivity selectivity in desorption stage may have remarkable effect on the total selectivity during pervaporation process. © 2012 American Institute of Chemical Engineers AIChE J, 59: 604–612, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号