首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most significant limitations to widespread industrial implementation of emerging bioplastics such as poly(lactic acid) and poly(hydroxyalkanoate) (PHA) is that they do not match the flexibility and impact resistance of petroleum‐based plastics like poly(propylene) or high‐density poly(ethylene). The basic goal of this research is to identify alternative, affordable, sustainable, biodegradable materials that can replace petroleum‐based polymers in a wide range of industrial applications, with an emphasis on providing a solution for increasing the flexibility of PHA to a level that makes it a superior material for bioplastic nursery‐crop containers. A series of bio‐based PHA/poly(amide) (PA) blends with different concentrations were mechanically melt processed using a twin‐screw extruder and evaluated for physical characteristics. The effects of blending on viscoelastic properties were investigated using small‐amplitude oscillatory shear flow experiments to model the physical character as a function of blend composition and angular frequency. The mechanical, thermal, and morphological properties of the blends were investigated using dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and tensile tests. The complex viscosity of the blends increased significantly with increasing concentration of PHA and reached a maximum value for 80 wt % PHA blend. In addition, the tensile strength of the blends increased markedly as the content of PHA increased. For blends containing PA at >50 wt %, samples failed only after a very large elongation (up to 465%) without significant decrease in tensile strength. The particle size significantly increased and the blends became more brittle with increasing concentration of PHA. In addition, the concentration of the PA had a substantial effect on the glass relaxation temperature of the resulting blends. Our results demonstrate that the thermomechanical and rheological properties of PHA/PA blends can be tailored for specific applications, and that blends of PHA/PA can fulfill the mechanical properties required for flexible, impact‐resistant bio‐based nursery‐crop containers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42209.  相似文献   

2.
Biodegradable polymer blends based on biosourced polymers, namely polylactide (PLA) and poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3HB‐co‐4HB)), were prepared by melt compounding. The effects of P(3HB‐co‐4HB) on the miscibility, phase morphology, thermal behavior, mechanical properties, and biodegradability of PLA/P(3HB‐co‐4HB) blends were investigated. The blend was an immiscible system with the P(3HB‐co‐4HB) domains evenly dispersed in the PLA matrix. However, the Tg of P(3HB‐co‐4HB) component in the blends decreased compared with neat P(3HB‐co‐4HB), which might be attributed to that the presence of the phase interface between PLA and P(3HB‐co‐4HB) resulted in enhanced chain mobility near interface. The addition of P(3HB‐co‐4HB) enhanced the cold crystallization of PLA in the blends due to the nucleation enhancement of PLA caused by the enhanced chain mobility near the phase interface between PLA and P(3HB‐co‐4HB) in the immiscible blends. With the increase in P(3HB‐co‐4HB) content, the blends showed decreased tensile strength and modulus; however, the elongation at beak was increased significantly, indicating that the inherent brittlement of PLA was improved by adding P(3HB‐co‐4HB). The interesting aspect was that the biodegradability of PLA is significantly enhanced after blends preparation. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
This paper deals with the synthesis of a series of six‐armed star diblock copolymers based on poly(l ‐lactide) (PLLA) and poly(?‐caprolactone) (PCL) by ring‐opening polymerization using stannous octoate as catalyst and the preparation of polylactide (PLA)/PCL linear blends using a solution blending technique, while keeping the PLA‐to‐PCL ratio comparable in both systems. The thermal, rheological and mechanical properties of the copolymers and the blends were comparatively studied. The melting point and the degree of crystallinity were found to be lower for the copolymers than the blends due to poor folding property of star copolymers. Dynamic rheology revealed that the star polymers have lower elastic modulus, storage modulus and viscosity as compared to the corresponding blends with similar composition. The blends show two‐phase dispersed morphology whereas the copolymers exhibited microphase separated morphology with elongated (worm‐like) microdomains. The crystalline structures of the copolymers were characterized by larger crystallites than their blend counterparts, as estimated using Sherrer's equation based on wide‐angle X‐ray diffraction data. © 2016 Society of Chemical Industry  相似文献   

4.
Poly(L ‐lactide) (PLLA) and poly(3‐hydrobutyrate‐co‐3‐hydroxyvalerate) (PHBV) were blended with poly(butadiene‐co‐acrylonitrile) (NBR). Both PLLA/NBR and PHBV/NBR blends exhibited higher tensile properties as the content of acrylonitrile unit (AN) of NBR increased from 22 to 50 wt %. However, two separate glass transition temperatures (Tg) appeared in PLLA/NBR blends irrespective of the content of NBR, revealing that PLLA was incompatible with NBR. In contrast, a single Tg, which shifted along with the blend composition, was observed for PHBV/NBR50 blends. Moreover NBR50 suppressed the crystallization of PHBV, indicating that PHBV was compatible with NBR50. Decrease of both elongation modulus and stress at maximum load was less significant and increase of elongation at break was more pronounced in PHBV/NBR50 blends than in PLLA/NBR50 blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3508–3513, 2004  相似文献   

5.
Poly(lactic acid) (PLA), a physical blend of PLA and thermoplastic cassava starch (TPCS) (PLA‐TPCS), and reactive blends of PLA with TPCS using maleic anhydride as compatibilizer with two different peroxide initiators [i.e., 2,5‐bis(tert‐butylperoxy)‐2,5‐dimethylhexane (L101) and dicumyl peroxide (DCP)] PLA‐g‐TPCS‐L101 and PLA‐g‐TPCS‐DCP were produced and characterized. Blends were produced using either a mixer unit or twin‐screw extruder. Films for testing were produced by compression molding and cast film extrusion. Morphological, mechanical, thermomechanical, thermal, and optical properties of the samples were assessed. Blends produced with the twin‐screw extruder resulted in a better grade of mixing than blends produced with the mixer. Reactive compatibilization improved the interfacial adhesion of PLA and TPCS. Scanning electron microscopy images of the physical blend showed larger TPCS domains in the PLA matrix due to poor compatibilization. However, reactive blends revealed smaller TPCS domains and better interfacial adhesion of TPCS to the PLA matrix when DCP was used as initiator. Reactive blends exhibited high values for elongation at break without an improvement in tensile strength. PLA‐g‐TPCS‐DCP provides promising properties as a tougher biodegradable film. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46140.  相似文献   

6.
This study examined the miscibility and mechanical properties of melt‐mixed poly(lactic acid) (PLA), poly (trimethylene terephthalate) (PTT), and PLA/PTT blend with 5–10 phr of methyl methacrylate‐butadiene‐styrene copolymer (MBS). The isothermal crystallization kinetics of the PTT blends were analyzed by using the Avrami equation. The Differential Scanning Calorimetry (DSC) and scanning electron microscope results indicated that the miscibility of the PLA/PTT blends was improved by adding 5–10 phr of MBS. Although PLA, with the addition of 10 phr of MBS, had lower tensile strength at yield and higher breaking elongation and impact strength than pure PLA, no improvement in these mechanical properties could be observed in PLA/PTT blends. This result is explained by assuming that the crystallization of PTT at the interface favors the disentanglement of MBS from the PTT domain. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

7.
Different hydroxyl content poly(styrene‐cop‐(hexafluoro‐2‐hydroxylisopropyl)‐α‐methylstyene) [PS(OH)‐X] copolymers were synthesized and blends with 2,2,6,6‐tetramrthyl‐piperdine‐1‐oxyl end spin‐labeled PEO [SLPEO] were prepared. The miscibility behavior of all the blends was predicted by comparing the critical miscible polymer–polymer interaction parameter (χcrit) with the polymer–polymer interaction parameter (χ). The micro heterogeneity, chain motion, and hydrogen bonding interaction of the blends were investigated by the ESR spin label method. Two spectral components with different rates of motion were observed in the ESR composite spectra of all the blends, indicating the existence of microheterogeneity at the molecular level. According to the variations of ESR spectral parameters Ta, Td, ΔT, T50G and τc, with the increasing hydroxyl content in blends, it was shown that the extent of miscibility was progressively enhanced due to the controllable hydrogen bonding interaction between the hydroxyl in PS(OH) and the ether oxygen in PEO. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2312–2317, 2004  相似文献   

8.
Biodegradable polymer blends based on poly(lactic acid) (PLA) and poly[(butylene succinate)‐co‐adipate] (PBSA) were prepared with a laboratory internal mixer. An epoxy‐based, multifunctional chain extender was used to enhance the melt strength of the blends. The morphology of the blends was observed with field emission scanning electron microscopy. The elongational viscosities of the blends, with and without chain extender, were measured with a Sentmanat extensional rheometer universal testing platform. The blends with chain extender exhibited strong strain‐hardening behavior, whereas the blends without chain extender exhibited only weak strain‐hardening behavior. Measurements of the linear viscoelastic properties of the melts suggested that the chain extender promoted the development of chain branching. The results show that PBSA contributed to significant improvements in the ductility of the PLA/PBSA blends, whereas the chain extender did not have a significant effect on the elastic modulus and strain at break of the blends. The combined blending of PLA with PBSA and the incorporation of the chain extender imparted both ductility and melt strength to the system. Thus, such an approach yields a system with enhanced performance and processability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Blown films from poly(butylene adipate‐co‐terephthalate) and poly(lactide) (PLA) blends were investigated. The blends were prepared in a twin‐screw extruder, in the presence of small amounts of dicumyl peroxide (DCP). The influence of DCP concentration on film blowing, rheological, mechanical, and thermal properties of the blends is reported in this article. Rheological results showed a marked increase in polymer melt strength and elasticity with the addition of DCP. As a consequence, the film homogeneity and the stability of the bubble were improved. The modified blend films, compared with the unmodified blend, showed an improvement in tensile strength and modulus with a slight loss in elongation. Fourier transform infrared and gel results revealed that chain scission and branching were more significant than crosslinking when the DCP loadings in the blends were not higher than 0.7%. A reduction in melt temperatures of PLA was observed due to difficulty in chain crystallization. The concentrations of DCP strongly affected the melting temperatures but had an insignificant effect on the decomposition behavior of the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Blends of poly (ε‐caprolactone) (PCL)/polylactide (PLA) were prepared by solution‐casting method to study their thermal and rheological properties. Differential scanning calorimetry thermographs have shown two separate melting peaks in the blends, which are indicative of immiscible structure at all compositions. Scanning electron microscopy images show droplet morphology of PCL into PLA matrix up to 40 wt% of PCL. Above this concentration, the co‐continuous morphology starts to appear, which becomes again droplet morphology for blends with concentration of PCL higher than about 60 wt%. The viscoelastic properties of the various blends were investigated using rotational rheometry. The enhancement of the elastic modulus of blends at small frequencies at which terminal zone behavior is expected, is a signature behavior of immiscible systems due to the presence of interface and contribution to the stress from interfacial tension. Two emulsion models were used to predict the viscoelastic properties of the blends from the corresponding properties of their pure components that led to the determination of the interfacial tension of PCL/PLA in agreement with experimental findings. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
In this work, stereocomplex‐poly(l ‐ and d ‐lactide) (sc‐PLA) was incorporated into poly(ε‐caprolactone) (PCL) to fabricate a novel biodegradable polymer composite. PCL/sc‐PLA composites were prepared by solution casting at sc‐PLA loadings of 5–30 wt %. Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) demonstrated the formation of the stereocomplex in the blends. DSC and WAXD curves also indicated that the addition of sc‐PLA did not alter the crystal structure of PCL. Rheology and mechanical properties of neat PCL and the PCL/sc‐PLA composites were investigated in detail. Rheological measurements indicated that the composites exhibited evident solid‐like response in the low frequency region as the sc‐PLA loadings reached up to 20 wt %. Moreover, the long‐range motion of PCL chains was highly restrained. Dynamic mechanical analysis showed that the storage modulus (E′) of PCL in the composites was improved and the glass transition temperature values were hardly changed after the addition of sc‐PLA. Tensile tests showed that the Young's modulus, and yield strength of the composites were enhanced by the addition of sc‐PLA while the tensile strength and elongation at break were reduced. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40208.  相似文献   

12.
An important strategy used in the polymer industry in recent years is blending two bio‐based polymers to attain desirable properties similar to traditional thermoplastics, thus increasing the application potential for bio‐based and bio‐degradable polymers. Miscibility of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) with poly(L ‐lactic acid) (PLA) were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Three different grades of commercially available PLAs and one type of PHBV were blended in different ratios of 50/50, 60/40, 70/30, and 80/20 (PHBV/PLA) using a micro‐compounder at 175°C. The DSC and TGA analysis showed the blends were immiscible due to different stereo configuration of PLA polymer and two distinct melting temperatures. However, some compatibility between PHBV and PLA polymers was observed due to decreases in PLA's glass transition temperatures. Additionally, the blends do not show clear separation by SEM analysis, as observed in the thermal analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
The objective of this study is processing and characterization of Halloysite nanotube (HNT)/poly(lactic acid) (PLA) nanocomposites. As HNT filler, a domestic source was used (ESAN HNT). The results obtained from this HNT were compared with a well‐known reference HNT (Nanoclay HNT). To achieve the desired physical properties and clay dispersion, composites were compounded via direct melt mixing in a laboratory twin‐screw compounder. However, the constituents were observed to be incompatible without a compatibilizer. To improve the flexibility of nanocomposites and provide compatibilization between PLA and HNT, two types of blends were prepared: PLA plasticized with poly(ethylene glycol) (PEG) denoted as P‐PLA and PLA toughened with a thermoplastic polyurethane (TPU) denoted as T‐PLA. Despite the limited improvement in the P‐PLA blends, TPU addition improved the flexibility of PLA/HNT without deteriorating the tensile strength in a great manner. This was attributed to the relatively better compatibilization effect of TPU and the role of nanotubes acting as bridges between the TPU and PLA phases. POLYM. COMPOS., 37:3134–3148, 2016. © 2015 Society of Plastics Engineers  相似文献   

14.
The Polylactide (PLA)/poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) blends with four different weight ratios were prepared by melt mixing. PLA and PHBV in PLA/PHBV blends were immiscible while the weak interaction between PLA and PHBV existed. The PHBV domains below 2 μm were dispersed in PLA matrix uniformly. The addition of PHBV made the crystallization of PLA easier due to PHBV acting as nucleating agent. PLA spherulites in PLA/PHBV blends presented various banded structures. In addition, the crystallinity of neat PLA was lower than those of PLA/PHBV blends. With the increase of PHBV content in PLA/PHBV blends, the crystallinity of PLA/PHBV blends increased. PHBV could enhance significantly the toughness of PLA. However, with the increase of PHBV content, the yield stress (σy), tensile modulus (E), and the yield strain (εy) of PLA/PHBV blends decreased gradually. In addition, incorporation of PHBV to PLA caused a transformation from an optical transparent to an opaque system. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42689.  相似文献   

15.
Poly(lactic acid)/poly(ethylene‐co‐vinyl acetate)/starch (PLA/EVA/starch) ternary blends were prepared by multi‐step melt processing (reactive extrusion) in the presence of maleic anhydride (MA), benzoyl peroxide and glycerol. The effects of MA and glycerol concentration on the morphology and properties of the PLA/EVA/starch blends were studied using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, the Molau experiment, dynamic mechanical thermal analysis and differential scanning calorimetry etc. The plasticization and compatibilization provided a synergistic effect to these blends accompanied by a significant reduction in starch particle size and an increase in interfacial adhesion. Starch was finely dispersed in the ternary blends with a dimension of 0.5 ? 2 µm. Furthermore, EVA‐coated starch or a starch‐in‐EVA type of morphology was observed for the reactively compatibilized PLA/EVA/starch blends. The EVA with starch gradually changed into a co‐continuous phase with increasing MA concentration. Consequently, the toughness of the blends was improved. Since property stability of starch is an issue, the tensile properties of these blends were measured after different storage times and the blends showed good property stability. Copyright © 2012 Society of Chemical Industry  相似文献   

16.
Poly(L ‐lactic acid) (PLLA) has good biocompatibility, biodegradability and physical properties. However, one of the drawbacks of PLLA is its brittleness due to the stiff backbone chain. In this work, a largely improved tensile toughness (extensibility) of PLLA was achieved by blending it with poly(ε‐caprolactone) (PCL). To obtain a good dispersion of PCL in the PLLA matrix, blends were prepared via a solution‐coagulation method. An increase in extensibility of PLLA of more than 20 times was observed on adding only 10 wt% of PCL, accompanied by a slight decrease in tensile strength. However, annealing of the samples led to a sharp decrease of extensibility due to phase separation and a change of crystalline structure. To conserve the good mechanical properties of PLLA/PCL blends, the blends were crosslinked via addition of dicumyl peroxide during the preparation process. For the crosslinked blend films, the extensibility was maintained nearly at the original high value even after annealing. Morphological analysis of cryo‐fractured and etched‐smoothed surfaces of the PLLA/PCL blends was carried out using scanning electron microscopy. Differential scanning calorimetry and polarized light microscopy experiments were used to check the possible change of crystallinity, melting point and crystal morphology for both PLLA and PCL after annealing. The results indicated that the combination of solution‐coagulation and crosslinking resulted in a good and stable dispersion of PCL in the PLLA matrix, which is considered as the main reason for the observed improvement of tensile toughness. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
The aim of this work was to better understand the performance of binary blends of biodegradable aliphatic polyesters to overcome some limitations of the pure polymers (e.g., brittleness, low stiffness, and low toughness). Binary blends of poly(ε‐caprolactone) (PCL) and poly(lactic acid) (PLA) were prepared by melt blending (in a twin‐screw extruder) followed by injection molding. The compositions ranged from pure biodegradable polymers to 25 wt % increments. Morphological characterization was performed with scanning electron microscopy and differential scanning calorimetry. The initial modulus, stress and strain at yield, strain at break, and impact toughness of the biodegradable polymer blends were investigated. The properties were described by models assuming different interfacial behaviors (e.g., good adhesion and no adhesion between the dissimilar materials). The results indicated that PCL behaved as a polymeric plasticizer to PLA and improved the flexibility and ductility of the blends, giving the blends higher impact toughness. The strain at break was effectively improved by the addition of PCL to PLA, and this was followed by a decrease in the stress at break. The two biodegradable polymers were proved to be immiscible but nevertheless showed some degree of adhesion between the two phases. This was also quantified by the mechanical property prediction models, which, in conjunction with material property characterization, allowed unambiguous detection of the interfacial behavior of the polymer blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Both poly(lactic acid) (PLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) are fully biodegradable polyesters. The disadvantages of poor mechanical properties of PLA limit its wide application. Fully biodegradable polymer blends were prepared by blending PLA with PBAT. Crystallization behavior of neat and blended PLA was investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and wide angle X‐ray diffraction (WAXD). Experiment results indicated that in comparison with neat PLA, the degree of crystallinity of PLA in various blends all markedly was increased, and the crystallization mechanism almost did not change. The equilibrium melting point of PLA initially decreased with the increase of PBAT content and then increased when PBAT content in the blends was 60 wt % compared to neat PLA. In the case of the isothermal crystallization of neat PLA and its blends at the temperature range of 123–142°C, neat PLA and its blends exhibited bell shape curves for the growth rates, and the maximum crystallization rate of neat PLA and its blends all depended on crystallization temperature and their component. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Polylactide (PLA) was melt blended with poly(1,2‐propylene glycol adipate) (PPA) in a Thermo‐Haake mixer. Thermal, mechanical, and rheological properties of the blends were investigated by means of differential scanning calorimetry, dynamic mechanical analysis, tensile test, and small amplitude oscillatory shear rheometry. PPA lowered the glass transition temperature and increased the ability of PLA to cold crystallization. With the increase in PPA content (5–25 wt%), the blends showed decreased tensile strength and Young's modulus; however, impact strength and elongation‐at‐break along were dramatically increased due to the plastic deformation. Morphological results of PLA/PPA blends showed that PPA was good compatible with PLA. The plasticization effect of PPA was also manifested by the lowering of dynamic storage modulus and viscosity in the melt state of the blends compared with neat PLA. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

20.
Blends of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) and polylactide (PLA) with different PHBV/PLA weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) were prepared by melt compounding. To improve the miscibility between the two components of the blend, low amount of compatibilizing agent (5 wt%), obtained by grafting maleic anhydride onto PHBV, was used. When compared with the uncompatibilized blends, the compatibilizer presence induces a greater interfacial adhesion. The effect of Cloisite 30B (C30B) on the blend morphology and the blend properties was also investigated. The morphology of the different blends as well as the evolution of their material properties were discussed in terms of the nanoclay and compatibilizing agent contents. A synergistic effect of compatibilizer and C30B was highlighted leading to an improved miscibility of the two blend components. The resulting properties were correlated with the morphology observed for the different blends. POLYM. ENG. SCI., 54:2239–2251, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号