首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carboxymethyl chitosan (CMCS)/polysulfone (PS) hollow‐fiber composite membranes were prepared through glutaraldehyde (GA) as the crosslinking agent and PS hollow‐fiber ultrafiltration membrane as the support. The permeation and separation characteristics for dehydration of isopropanol were investigated by the pervaporation method. Pure chitosan, carboxymethyl chitosan, and crosslinked carboxymethyl chitosan membranes were characterized by Fourier transform infrared (FT‐IR) spectroscopy and X‐ray diffraction (XRD) to study the crosslinking reaction mechanism and degree of crystallinity, respectively. The effects of feed composition, crosslinking agent, membrane thickness, and feed temperature on membrane performance were investigated. The results show that the crosslinked CMCS/PS hollow‐fiber composite membranes possess high selectivity and promising permeability. The permeation flux and separation factor for isopropanol/water is 38.6 g/m2h and 3238.5, using 87.5 wt % isopropanol concentration at 45°C, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1959–1965, 2007  相似文献   

2.
The present study investigated the pervaporation performance of novel hydroxypropylated chitosan (HPCS) membranes to separate water from an aqueous alcohol solution. Hydroxypropylated chitosan was prepared from the reaction of chitosan and propylene oxide. The results show that the separation factor decreases and the flux increases with increasing of the substitution degree of the hydroxypropylated chitosan membrane. Crosslinking with glutaraldehyde or treatment with Cu2+ can improve the pervaporation performance of modified chitosan membrane grately. The performance data indicate that the crosslinking hydroxypropylated chitosan membrane treated with Cu2+ is an excellent pervaporation membrane for the separation of alcohol–water mixtures, and one-stage separation is attainable for some alcohol–water mixtures such as an n-propanol–water and an isopropanol–water system, which has a good separation factor of 220 for the n-PrOH/water system and 240 for the i-PrOH/water system using 85 wt % alcohol concentration at 60°C. The flux for both cases is around 0.5 kg m−2 h−1. At the same time, the structure of the chemically modified chitosan membranes and their separation characteristics for aqueous alcohol solutions are also discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2035–2041, 1998  相似文献   

3.
Membranes made from 84% deacetylated chitosan biopolymer were cross‐linked by a novel method using 2,4‐toluylene diisocyanate (TDI) and tested for the separation of t‐butanol/water mixtures by pervaporation. The unmodified and cross‐linked membranes were characterized by Fourier transform infra red (FTIR) spectroscopy, X‐ray diffraction (XRD) studies and sorption studies in order to understand the polymer–liquid interactions and separation mechanisms. Thermal stability was analyzed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) while tensile strength measurement was carried out to assess mechanical strength. The membrane appears to have good potential for breaking the aqueous azeotrope of 88.2 wt% t‐butanol by giving a high selectivity of 620 and substantial water flux (0.38 kg m?2 hr?1). The effects of operating parameters such as feed composition, membrane thickness and permeate pressure on membrane performance were evaluated. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
In this study, we investigated methanol (MeOH)/methyl tert‐butyl ether (MTBE) separation with hydroxyethylcellulose (HEC)/agarose blended membranes by applying a pervaporation technique. The membranes permeated MeOH in preference to MTBE from MeOH/MTBE mixtures. From pervaporation and sorption data, the permselectivity of HEC/agarose blended membrane was dominantly due to solubility selectivity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3408–3411, 2002  相似文献   

5.
Grafted copolymeric membranes of poly(vinyl alcohol) with acrylamide (PVA‐g‐AAm) were developed and used in the pervaporation separation of water–dimethylformamide mixtures by varying the amount of water in the feed from 0 to 100%. From these data, the permeation flux, pervaporation separation index, diffusion coefficient, swelling index, and separation selectivity were calculated at 25, 35, and 45°C. The Arrhenius activation parameters for permeation flux ranged between 22 and 63 kJ/mol, while the activation energy for diffusion ranged between 23 and 67 kJ/mol. Separation selectivity was between 15 and 22. The highest permeation flux of 0.459 kg m?2 h?1 was obtained for the 93% grafted membrane at 90% of water in the feed mixture. The results are discussed using the principles of the solution–diffusion model. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 273–282, 2002  相似文献   

6.
Fixed‐carrier composite hollow‐fiber membranes were prepared with polyvinylamine (PVAm) as the selective layer and a polysulfone ultrafiltration membrane as the substrate. The effects of the PVAm concentration in the coating solution, the number of coatings, and the crosslinking of glutaraldehyde and sulfuric acid on the CO2 permeation rate and CO2/CH4 selectivity of the composite membranes were investigated. As the PVAm concentration and the number of coatings increased, the CO2/CH4 selectivity increased, but the CO2 permeation rate decreased. The membranes crosslinked by glutaraldehyde or sulfuric acid possessed higher CO2/CH4 selectivities but lower CO2 permeation rates. For the pure feed gas, a composite hollow‐fiber membrane coated with a 2 wt % PVAm solution two times and then crosslinked with glutaraldehyde and an acid solution in sequence had a CO2 permeation rate of 3.99 × 10?6 cm3 cm?2 s?1 cmHg?1 and an ideal CO2/CH4 selectivity of 206 at a feed gas pressure of 96 cmHg and 298 K. The effect of time on the performance of the membranes was also investigated. The performance stability of the membranes was good during 6 days of testing. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1885–1891, 2006  相似文献   

7.
Hollow‐fiber carbon membranes were prepared and used as support media for a platinum catalyst. The platinum metal was deposited onto the surface of the hollow‐fiber carbon membranes by three different techniques: solution coating with chloroplatinic acid, which is the commonly used technique; vapor deposition, involving the sublimation of the platinum metal; and magnetron sputter coating, the most effective method. The hollow‐fiber carbon membranes coated with a chloroplatinic acid solution were studied with scanning electron microscopy (SEM) and energy‐dispersive X‐ray analysis (EDAX). The platinum coating grew on the surface, unevenly, in the form of small crystals. The percentage of platinum on the surface was too low to be detected by EDAX. The high‐vacuum evaporation coating of the membranes with platinum was also studied with both SEM and EDAX. Again, because of the low percentage of platinum, EDAX did not reveal any platinum on the surfaces of the membranes. The magnetron sputter coating of platinum onto the membranes was performed and studied with SEM. The thickness of the coated platinum could be varied through variations in the coating time. The cavities observed in the micrographs were formed during the coating operations by the presence of dust particles on the membranes. An SEM micrograph of a hollow‐fiber carbon membrane, produced from a polyacrylonitrile‐based precursor, spun with a low amount of dimethyl sulfoxide in the bore fluid, and coated with platinum, showed a skin on the outside and a porous elongated structure inside the skin. The distance between the inner and outer skins contained fingerlike pores of various sizes. The largest pores were found near the inside skin, whereas the smallest pores were next to the outside skin. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1051–1058, 2003  相似文献   

8.
The effect of sulfonation and bromination‐sulfonation on the gas transport properties of polyphenylene oxide has been investigated. These high‐performance modified polymers have been studied in the form of TFC membranes by solution coating on the skin side of polyetherimide hollow fibers. TFC membrane modules prepared from sulfonated‐brominated polyphenylene oxide as the active layer coated on polyetherimide hollow fibers. Stability of the TFC membranes was greatly improved when a wet feed stream was used instead of a dry one. Water vapor in the feed stream most likely prevented the active layer from stress cracking on drying. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 275–282, 2001  相似文献   

9.
Polysulfone (PSf) asymmetric hollow‐fiber membranes, which have a dense outer layer but a loose inner layer, were tentatively fabricated by coextrusion through a triple‐orifice spinneret and a dry/wet‐phase inversion process. Two simple polymer dopes were tailored, respectively, for the dense outer layer and the porous inner layer according to the principles of the phase‐inversion process. By adjusting the ratio of the inner/outer extrusion rate, the hollow‐fiber membranes with various thicknesses of outer layers were achieved. The morphology of the hollow‐fiber membranes was exhibited and the processing conditions and the water permeability of the membrane were investigated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 259–266, 2004  相似文献   

10.
The separation of ethanol/ethyl‐tertiobutylether mixtures by pervaporation was studied with new membranes prepared from N‐vinyl‐pyrrolidinone (NVP) and N‐[3‐(trimethylamoniopropyl)]methacrylamidemethylsulfate) (TMA). The pervaporation results showed that highly EtOH selective membranes could be obtained from PVP blends and from pyrrolidinone‐based crosslinked copolymers. The influences of the polymer blend composition and the role of the polymer microstructures on the membrane properties were investigated. Whatever the exact NVP/TMA composition used, the membranes strongly favored the pervaporation of ethanol. The ethanol selectivity was higher for the lower PVP/TMA ratio. On the one hand, these results were ascribed to the high pyrrolidinone residues content, which is responsible of the enhanced EtOH sorption affinity. The observed permeation selectivity was in agreement with the swelling data also recorded with the different polymers, showing higher affinity for ethanol with PVP‐enriched materials compared with TMA ones. This is a direct consequence of the Lewis base feature of pyrrolidinone sites towards EtOH molecules. On the other hand, the TMA residues improved the overall stability and selectivity of the membranes thanks to crosslinking reactions, which were induced by thermal treatment. A close comparison made between polymer blend and copolymer pervaporation results helped to clarify the TMA role of the membrane transport properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3622–3630, 2006  相似文献   

11.
Composite membranes were prepared by incorporating ZSM‐5 zeolite into poly(ether‐block‐amide) (PEBA) membranes. These composite membranes were characterized by TGA, XRD, and SEM. The results showed that the zeolite could distribute well in the polymer matrix. And when the zeolite content reached 10%, the agglomeration of zeolite in the membranes was found. The composite membranes were used to the pervaporative separation of n‐butanol aqueous solution. The effect of zeolite content on pervaporation performance was investigated. With the contribution of preferential adsorption and diffusion of n‐butanol in the polymer matrix and zeolite channel, the 5% ZSM‐5‐PEBA membrane showed enhanced selectivity and flux. The effects of liquid temperature and concentration on separation performance were also investigated. All the composite membranes demonstrated increasing separation factor and permeation flux with increasing temperature and concentration. Incorporation of ZSM‐5 could decrease the activation energy of n‐butanol flux of the composite membrane. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
The pervaporation (PV) separation and swelling behavior of water–acetic acid mixtures were investigated at 30, 40, and 50°C using pure sodium alginate and its zeolite‐incorporated membranes. The effects of zeolite loading and feed composition on the pervaporation performance of the membranes were analyzed. Both the permeation flux and selectivity increased simultaneously with increasing zeolite content in the polymer matrix. This was discussed on the basis of a significant enhancement of hydrophilicity, selective adsorption, and molecular sieving action, including a reduction of pore size of the membrane matrix. The membrane containing 30 mass % of zeolite showed the highest separation selectivity of 42.29 with a flux of 3.80 × 10?2 kg m?2 h?1 at 30°C for 5 mass % of water in the feed. From the temperature dependency of diffusion and permeation data, the Arrhenius activation parameters were estimated. The Ep and ED values ranged between 72.28 and 78.16, and 70.95 and 77.38 kJ/mol, respectively. The almost equal magnitude obtained in Ep and ED values signified that both permeation and diffusion contribute equally to the PV process. All the membranes exhibited positive ΔHs values, suggesting that the heat of sorption is dominated by Henry's mode of sorption. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2101–2109, 2004  相似文献   

13.
Poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) can be crosslinked by interfacial polymerization to develop a positively charged dense network structure. According to this mechanism, a positively charged hollow‐fiber composite nanofiltration (NF) membrane was prepared by quaternization to achieve a crosslinked PDMAEMA gel layer on the outer surface of polysulfone hollow‐fiber ultrafiltration (UF) membranes with a PDMAEMA aqueous solution as a coating solution and p‐xylylene dichloride as an agent. The preparation conditions, including the PDMAEMA concentration, content of additive in the coating solution, catalyzer, alkali, crosslinking temperature, and hollow‐fiber substrate membrane, were studied. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the structure of the membranes. This membrane had a rejection to inorganic salts in aqueous solution. The rejection of MgSO4 (2 g/L aqueous solution at 0.7 MPa and 25°C) was above 98%, and the flux was about 19.5 L m?2 h?1. Moreover, the composite NF membranes showed good stability in the water‐phase filtration process. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Methyl methacrylate, ethyl methacrylate, propyl methacrylate, and styrene were graft‐polymerized onto the amorphous polyamide poly(hexamethylene terephthalamide/isophthalamide) (SELAR). Membranes were prepared from the modified SELAR and unmodified SELAR. The membranes were permeated benzene in preference to cyclohexane from benzene/cyclohexane mixtures by pervaporation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 183–188, 2003  相似文献   

15.
The permeation behavior of water/tert‐butanol mixture through Sulzer Pervap2510 hydrophilic poly(vinyl alcohol) membranes was investigated and the effects of feed composition and temperature on separation efficiency of the membranes were studied. The pervaporation experiments were carried out with feed water content varying from 0 to 20 wt % according to the existing industrial needs and with the feed temperature from 60 to 100°C. Over this range, both water flux and separation factor increased with increasing water content and feed temperature. These phenomena may be attributed to (1) the strong interaction between water and the membrane, (2) the decoupling effect of the permeants and the membrane at elevated temperatures, and (3) the steric hindrance effect of branch chain alcohol. The permeability ratio (the ideal separation factor) of water to tert‐butanol across the membrane was calculated and found to follow the same relationship with increasing temperature and water content. Both flux and separation factor obtained from the Pervap2510 membrane in this study were much higher than previous reported values, possible causes for which were analyzed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4082–4090, 2004  相似文献   

16.
Natural alkaline polyelectrolyte chitosan has been considered to be a promising anion exchange membrane (AEM) material due to its low cost and easy quaternization. To further improve the ionic conductivity and mechanical property of quaternized chitosan (QCS), QCS functionalized carbon nanotubes (QCS@CNTs) were prepared and used as a novel nanofiller to modify the membrane matrix. The QCS coating layer on the surface of CNTs can not only improve the dispersion of CNTs and thus promote the load transfer from the QCS matrix to stiff CNTs, but also endow CNTs with a certain hydroxide ions exchange ability. The results show that the addition of QCS@CNTs slightly decreased the ionic conductivity of the composite membranes while the tensile strength and alkaline stability of these membranes were significantly improved, indicating the potential application of these composite membranes in AEM fuel cells. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47778.  相似文献   

17.
The aim of this study was to optimize the formula of free blended coating membrane of ethyl cellulose (EC) and chitosan (CS), including their suitable ratio range and the best plasticizer used. The dry films were produced by a casting/solvent evaporation method, with different volume ratio of EC and CS solution plasticized by various plasticizers, respectively. The wet films were prepared by immersing dry films in pH 6.8 phosphate buffer saline (PBS) for 24 h. The promising ratio range of EC/CS was below 20/5 or 20/6 with various plasticizer, which was determined by comparing the viscosity of the blended solutions and the morphology of the blended films. The efficiency of plasticization was evaluated by measuring glass transition temperature (Tg). All the testing plasticizers have good compatibility with EC or CS and dibutyl phthalate (DBP) have the strongest efficiency inducing the lowest Tg (39.9°C) of the film. Mechanical properties were evaluated by the ratio of tensile strength (T) to elastic modulus (E). In the wet state, the films with DBP had the highest T/E value (1.2). The results of leaching of plasticizers also verified that DBP was the most stable plasticizer in the films. The release rates of tetramethylpyrazine phosphate (TMPP) through the pellets coated with the blended films of EC/CS (20 : 6 v/v) plasticized by various plasticizers showed that the more water‐soluble the plasticizer was, the more quickly TMPP dissolved from the coated pellets, which further indicated that the water‐insoluble plasticizers (such as DBP) could be more applicable to keep the sustained or controlled release property of the blended films in wet state. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1932–1939, 2006  相似文献   

18.
The novel organic–inorganic hybrid membranes were prepared from poly(vinyl alcohol) (PVA) and vinyltriethoxysilane (VTES). They were characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and contact angle metering. The as‐prepared membranes are formed at a molecular scale at a low VTES content. Aggregations in the surface of the as‐prepared membranes were clearly evident above 18.43 wt % VTES loading. The introduction of VTES into the PVA matrix resulted in a decrease in the crystalline and an increase in compactness and thermal stability of the as‐prepared membranes. Silica hybridization reduced the swelling of the as‐prepared membranes in water/ethanol/ethyl acetate mixtures, decreased the permeation flux, and remarkably enhanced water permselectivity in pervaporation dehydration of ethanol/ethyl acetate aqueous solution. The hybrid membrane with 24.04 wt % VTES has the highest separation factor of 1079 and permeation flux of 540 g m?2 h?1. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
In further purification of ethyl acetate (EAC) process, azeotropic distillation or extractive distillation is usually applied. High energy consumption limits the economic profit of the process. In this study, pervaporation separation of EAC/ethanol (EA)/water ternary mixtures using the ceramic-supported polyvinyl alcohol (PVA) composite membrane was investigated to substitute the azeotropic distillation or extractive distillation. Swelling experiments were performed to evaluate the sorption characteristic of the membrane. Flory-Huggins theory was applied to study the interaction between the membrane and the penetrant. The UNIFAC model was adopted to investigate the variation of the penetrant activity in the membrane. The effects of operation temperature, feed water content and feed flow rate on the PV performance of the membrane were systematically investigated. The composite membrane exhibited high PV performance with the total flux of 2.1 kg·m−2·h−1 and 94.9 wt% permeate concentration of water (operation condition: feed composition 82.6 wt% EAC, 8.4 wt% EA, 9 wt% water, feed temperature 60 °C, feed flow rate 252 mL· min−1). The PV performance of the membrane varied slightly over a continuous PV experiment period of 110 h. Our results demonstrated that the PVA/ceramic membrane was a potential candidate for the purification of EAC/EA/water ternary mixtures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号