首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two features of a newly modified opponent‐colors theory are examined for correctness: (1) The perceived chroma of pure color is different for different hues. This was confirmed by using Ikeda's UCS (Uniform Color Scales) formula and also by the maximum Munsell Chroma Values for different hues. (2) Chromatic colors with the same values of whiteness, blackness, grayness, and perceived chroma have the same perceived lightness and chromatic tone regardless of hue. This was confirmed by a theoretical analysis and observations of the color samples in the Practical Color Co‐ordinate System (PCCS) developed in Japan. Chromatic tone, a complex concept of object colors, is clarified. The structure of the newly modified theory and its corresponding color space were confirmed by observation of object colors. Furthermore, it was found effective for developing a color‐order system and its corresponding standard color charts to the modified theory. © 2003 Wiley Periodicals, Inc. Col Res Appl, 28, 298–307, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10164  相似文献   

2.
The present study describes the usefulness and importance of chromatic tone concept on object colors. It is clarified that the concept of a tone category consists of the same perceived lightness and the same degree of vividness of chromatic object colors in the tone irrespective of hue. Prediction equations are given to color attributes on perceived lightness and degree of vividness. They clearly show different functions on metric lightness and metric chroma on the two color attributes. It is also clarified that the theoretical opponent‐colors system by the author (NT system) gives a basis for defining the tone concept, perceived lightness, and degree of vividness. The results of the present study are useful for understanding fundamental color notion “tone,” which is important both in the fields of colorimetry (fundamental color‐perception study) and color design (practical application). In addition, attributes of equivalent whiteness–blackness [W‐Bk]eq and equivalent chroma Ceq are proposed. © 2005 Wiley Periodicals, Inc. Col Res Appl, 30, 221–234, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20108  相似文献   

3.
Simple formulas are proposed for predicting the Munsell value of colors with the same tone (the same values for whiteness‐blackness, perceived lightness, and chroma irrespective of hue). The formulas can be used for any tone. In other words, the method can determine the Munsell value with the same perceived lightness at any specified chroma irrespective of hue. The chromatic strength (CS) function is only used for the derivations. The formulas are very simple, and can be used not only in the colorimetry but also in the color design field. The concept described in this study is that a common CS function can be used for transforming each of the three color attributes (hue, lightness, and chroma) from their uniform color space metric to their corresponding color appearance space attribute. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

4.
Chroma‐step perception and its corresponding color difference in the same hue direction are the different attributes on color perception. The differences between them are different for different hues. Hue‐appearance step and its corresponding color difference along the same hue circle also have completely different concepts. The causes of the above two facts are clarified. The information based on various experiments and theoretical considerations are given for supporting the facts. In addition, it is clarified that the relationship on color‐appearance step and color difference has completely different characteristics between the quantitative (chroma) and the qualitative (hue) attributes of object colors. The importance of chromatic strength (CS) on hue is clarified in each of the three color attributes hue, value, and chroma. © 2004 Wiley Periodicals, Inc. Col Res Appl, 30, 42–52, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20073  相似文献   

5.
Complexities on the roles of reference color gray and grayness are reviewed. They are essential in color appearance, but gray is an implicit color. Although “grayness” is not explicitly used in visual color assessment of surface colors or color order systems, gray can be combined with any colors having six primary‐color components using the term “grayish,” for example, grayish red and grayish yellow. However, the existing region of grayness is limited in a part of color‐appearance space. Illuminance dependency of gray perception is also clarified. Existence of two kinds of psychometric quantities are suggested: one is the attribute of grayness based on its psychological amount in a grayish color under study, and the other is the attribute of brightness of the grayish color under a specified illuminance, psychophysical quantity. The Nayatani‐Theoretical color order system, which uses three opponent‐colors axes, can clarify the above complexities of gray and grayness. Its importance is the same as six primary colors, red–green, yellow–blue, and white–black. © 2012 Wiley Periodicals, Inc. Col Res Appl, 39, 37–44, 2014  相似文献   

6.
Emotions are often associated with colors, but what mediates color–emotion associations is not fully understood. This study examined associations between colors and emotions using correspondence analysis. The hypothesis that emotions are associated with colors through the correspondence between the hue circle and the circumplex model of emotion/affect was tested. Participants viewed 40 colors and reported a word that expressed an emotion that they associated with or felt in response to each color. Participants' responses were aggregated into a contingency table of colors and emotion words, and a correspondence analysis was conducted. An eight‐dimensional biplot was obtained. The first and second dimensions were related to hue, and the hue configuration was similar to colors' spectral trajectory in the CIE xy space or the CIELAB a*b* color space. The configuration of emotions was not consistent with the circumplex model of emotion, which rejected the above hypothesis. The associations in dimensions 1 and 2 appeared to be mediated by the perceived temperature of colors and emotions. In dimensions 3–6, dimensions that seemed to reflect secondary associations based on cultural convention or personal experiences (such as white with emotionless and purity and blue with depression) were obtained. These results also demonstrated the usefulness of correspondence analysis for analyzing color–emotion associations due to its ability to reveal the underlying statistical structure of associations.  相似文献   

7.
A new type of color‐appearance model (CAM) is proposed together with its concept and flow of formulations. The topics described are: (1) The existence of two kinds of color‐appearance models, CAMs previously used and CAMs newly proposed. (2) All the CAMs, previously developed and used, do not predict color‐appearance attribute of perceived lightness of object colors under any illuminations. They may be adequately called “the model for predicting color‐appearance match between object colors under different adapting conditions.” (3) Newly improved CAMs take the Helmholtz–Kohlrausch effect in the VCC method into account. They can determine object colors with the same Tone (equi‐perceived lightness, equi‐whiteness‐blackness, and equi‐perceived chroma) irrespective of hues under reference illuminant. The newly improved models can be named Integrated CAMs. Their applicable fields are described in detail. © 2007 Wiley Periodicals, Inc. Col Res Appl, 32, 113–120, 2007  相似文献   

8.
Some modifications are made to the achromatic color perceptions in Hering's opponent‐colors theory. They are the introduction of the reference color Gray and the use of the orthogonal coordinate system. The modified opponent‐colors theory has a symmetrical structure for the three opponent‐colors axes, whiteness‐grayness‐blackness, redness‐grayness‐greenness, and yellowness‐grayness‐blueness, and it unifies the Hunt and the Stevens and Jameson–Hurvich effects. It is also noted that two kinds of color‐appearance spaces exist. One is the color‐appearance space derived from color perceptions of object colors (called the CPS color‐appearance space). The other is that modeled from their colorimetric values for predicting color perceptions (called the UCS color‐appearance space). The CPS color‐appearance space is mainly described in this article. Scaling of the CPS color‐appearance space and the existence of the reference color perception Gray are discussed in detail. © 2001 John Wiley & Sons, Inc. Col Res Appl, 26, 290–304, 2001  相似文献   

9.
The development of wide color gamut (WCG) liquid crystal display (LCD) plays an important role in the high‐quality television (TV) field. Nowadays, people want their TV or display devices to have the capability of showing vivid colors while keeping skin colors as natural as they remember. Therefore, it is necessary to develop color‐correction technologies for WCG LCD system. A new color‐correction method named “natural skin‐color mapping algorithm” (NSCMA) for WCG LCD is proposed in this study. It can solve the skin‐color contour problem in color‐corrected images with simple skin‐color detection. Its development is based on the concepts of performing color mapping between source hue colors and target hue colors on each hue page. The polynomial regression is also applied to calculate the color mapping conversion matrices. Two color mapping factors called template‐size factor and tone‐compression factor are designed in NSCMA. The template‐size factor is used to adjust target template sizes adequately. The tone‐compression factor is designed to control the degrees of image enhancement. For facial skin‐color pictures, the appropriate settings of template‐size factor and tone‐compression factor will get suitable color image rendering on the WCG LCD. It is demonstrated that the WCG LCD can be corrected to show vivid color pictures and keep facial skin colors as natural as possible when the proposed NSCMA is performed. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

10.
Colors from naturally dyed fabrics recently have attracted both consumers and manufacturers in fashion markets. Even though color attributes of the fabrics have been partially observed in some literature, a data base of colors for natural colorants in fabrics needs to be established and the colors to be characterized according to systematic color notations and tones in order to relate the traditional natural colors to contemporary color communication systems. Therefore, a study was performed to investigate color characteristics for a given large set of natural colorants‐dyed fabrics based on the Munsell color notations, to analyze their tones with relation to the notation such as hue, value, and chroma, and finally to identify the effects of mordanting, an important coloring auxiliary, on the colorimetric properties of the fabrics. As a result, the dominant hue for a total of 350 naturally dyed fabrics was yellowish families followed by reddish and purplish ones in the Munsell notation owing to the use of leaves and plant as usual natural dyestuff, which confirms the limit of color hues of the fabrics. Color value for most of naturally dyed fabrics was generally higher whereas the chroma was lower, which means that most of colors for naturally dyed fabrics tended to be bright and weak shaded. Grayish, light grayish, and soft tones were the main tones of natural colorant‐dyed fabrics. All of hue, value, and chroma were found as being influenced by mordanting in that more particularly; iron mordanting was likely to cause the decrease of both value and chroma for most of naturally dyed fabrics. These results could provide a systematic color data for naturally dyed fashion fabrics and suggest a future direction of color development for them. © 2008 Wiley Periodicals, Inc. Col Res Appl, 33, 148–157, 2008  相似文献   

11.
The objective of this study was to develop a specific visual dataset comprising black‐appearing samples with low lightness (L* ranging from approximately 10.4 to 19.5), varying in hue and chroma, evaluating their visual differences against a reference sample, and testing the performance of major color difference formulas currently in use as well as OSA‐UCS‐based models and more recent CAM02 color difference formulas including CAM02‐SCD and CAM02‐UCS models. The dataset comprised 50 dyed black fabric samples of similar structure, and a standard (L*= 15.33, a* = 0.14, b* = ?0.82), with a distribution of small color differences, in ΔE*ab, from 0 to approximately 5. The visual color difference between each sample and the standard was assessed by 19 observers in three separate sittings with an interval of at least 24 hours between trials using an AATCC standard gray scale for color change, and a total of 2850 assessments were obtained. A third‐degree polynomial equation was used to convert gray scale ratings to visual differences. The Standard Residual Sum of Squares index (STRESS) and Pearson's correlation coefficient (r), were used to evaluate the performance of various color difference formulae based on visual results. According to the analysis of STRESS index and correlation coefficient results CAM02 color difference equations exhibited the best agreement against visual data with statistically significant improvement over other models tested. The CIEDE2000 (1:1:1) equation also showed good performance in this region of the color space. © 2013 Wiley Periodicals, Inc. Col Res Appl, 39, 589–598, 2014  相似文献   

12.
Relationships between suprathreshold chroma tolerances and CIELAB hue‐angles have been analyzed through the results of a new pair‐comparison experiment and the experimental combined data set employed by CIE TC 1–47 for the development of the latest CIE color‐difference formula, CIEDE2000. Chroma tolerances have been measured by 12 normal observers at 21 CRT‐generated color centers L*10 = 40, C*ab,10 = 20 and 40, and hab,10 at 30° regular steps). The results of this experiment lead to a chroma‐difference weighting function with hue‐angle dependence WCH, which is in good agreement with the one proposed by the LCD color‐difference formula [Color Res Appl 2001;26:369–375]. This WCH function is also consistent with the experimental results provided by the combined data set employed by CIE TC 1–47. For the whole CIE TC 1–47 data set, as well as for each one of its four independent subsets, the PF/3 performance factor [Color Res Appl 1999;24:331–343] was improved by adding to CIEDE2000 the WCH function proposed by LCD, or the one derived by us using the results of our current experiment together with the combined data set employed by CIE TC 1–47. Nevertheless, unfortunately, from the current data, this PF/3 improvement is small (and statistically nonsignificant): 0.3 for the 3657 pairs provided by CIE TC 1–47 combined data set and 1.6 for a subset of 590 chromatic pairs (C*ab,10>5.0) with color differences lower than 5.0 CIELAB units and due mainly to chroma. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 420–427, 2004; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/col.20057  相似文献   

13.
Nayatani‐theoretical (NT) color order system is a Hue–Tone color order systems. It can be used for determining surface colors with the same Tone (equiperceived lightness and equiperceived chroma) irrespective of hues under reference illuminant. The fundamental structure of NT system uses Munsell attributes HV/C for the easiness of its use. Some deviations caused by the approximation on chroma scale are naturally expected in NT system, although the formula used for deriving equivalent lightness Veq has the same structure as that for deriving L*eq using the corresponding CIELUV formula. The present article discusses the degree of approximation, and confirms the goodness of approximation. NT system can be used as it is for the field of artistic color design (complete accuracy is not required). The corrections, however, should be introduced in NT system, when higher accuracy is required. © 2007 Wiley Periodicals, Inc. Col Res Appl, 32, 230–233, 2007  相似文献   

14.
The chromaticities of the Munsell Renotation Dataset were applied to eight color‐appearance models. Models used were: CIELAB, Hunt, Nayatani, RLAB, LLAB, CIECAM97s, ZLAB, and IPT. Models were used to predict three appearance correlates of lightness, chroma, and hue. Model output of these appearance correlates were evaluated for their uniformity, in light of the constant perceptual nature of the Munsell Renotation data. Some background is provided on the experimental derivation of the Renotation Data, including the specific tasks performed by observers to evaluate a sample hue leaf for chroma uniformity. No particular model excelled at all metrics. In general, as might be expected, models derived from the Munsell System performed well. However, this was not universally the case, and some results, such as hue spacing and linearity, show interesting similarities between all models regardless of their derivation. © 2000 John Wiley & Sons, Inc. Col Res Appl, 25, 132–144, 2000  相似文献   

15.
Adapting luminance dependencies of various color attributes of object colors (lightness, brightness, whiteness‐blackness, whiteness‐blackness strength, chroma, and colorfulness) were clarified under white illumination with various adapting illuminances. The correlation between the perceptions of lightness and brightness and those of whiteness‐blackness and whiteness‐blackness strength is also clarified for achromatic object colors. The difference between the increase of brightness and that of whiteness‐blackness contrast (the effect studied by Stevens and Jameson—Hurvich) by raising their adapting illuminance is resolved without any contradiction. It is also shown that the nonlinear color‐appearance model developed by the author and his colleagues is able to explain the complex characteristics of all the above color attributes of object colors by making minor modifications to it. In addition, two kinds of classifications of various color attributes are given; one is based on the similarity of perception level, and the other on the degree of adapting illuminance dependency. © 2000 John Wiley & Sons, Inc. Col Res Appl, 25, 318–332, 2000  相似文献   

16.
Preferred chroma enhancement and its dependence on hue are studied in a two‐part experiment using a wide‐gamut multiprimary display. Earlier research showed a clear dependence on hue but was limited by the gamut of the display it employed; the present work builds on this while easing the gamut constraints. In the first part of the present experiment, a tuning task was used to refine the preference for chroma boost starting with standard‐gamut (Rec. 709) images. The overall median preferred boost is roughly 20%, but it is not uniform over hues: the preferred boost for orange, yellow, green, and cyan colors is greater than that for blue, magenta, and red colors. Dependence on image content and observer is noted, though a content‐independent chroma boost created by aggregating preference over many images performs well. An adjustment parameter for overall chroma, which incorporates the hue dependence averaged over image content, should be sufficient to handle the vast majority of interobserver variance in preference. In the second part of the experiment, various chroma boost algorithms were evaluated through a paired comparison task. The prescribed hue‐dependent chroma boost is preferred over all other variations, and all hue‐preserving chroma boost variations are preferred over both colorimetrically accurate and na??ve same‐drive‐signal renderings. The results may be applied in display design to select gamut boundaries that maximize satisfaction over the observer population. © 2012 Wiley Periodicals, Inc. Col Res Appl, 39, 169–178, 2014  相似文献   

17.
In the proposed modified opponent‐colors system, the hue regular rectangles show the chromatic coordinates of any chromatic colors better than hue circles. In the hue rectangles equihue and equichroma loci are shown together with equigrayness loci. In the color perception space of the modified opponent‐colors system, a city‐block metric must be used instead of a Euclidean one for distance. The reason for this is described in detail. The proposed color perception space constitutes a regular octahedron. © 2002 Wiley Periodicals, Inc. Col Res Appl, 27, 171–179, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10046  相似文献   

18.
When a color differs from the reference, it is desirable to ascribe the difference to differences in the perceptual attributes of hue, chroma, and/or lightness through psychometric correlates of these attributes. To this end, the CIE has recommended the quantity ΔH* as a psychometric correlate of hue as defined by ΔH* = [(ΔE*)2 - (ΔL*)2 - (ΔC*)2]1/2, where the correlates correspond to either the 1976 CIELAB or CIELUV color spaces. Since ΔH* is defined as a “leftover,” this definition is valid only to the extent that ΔE* comprises exclusively ΔL*, ΔC*, and ΔH* and that ΔL*, ΔC*, and ΔH* are mutually independent compositionally, both psychophysically and psychometrically. It will be shown that as now defined ΔH* lacks psychometric independence of chroma and always leads to incorrect hue difference determination. Such a deficiency causes problems, especially in the halftone color printing industry, since it can suggest an incorrect adjustment for the hue of the inks. A revised definition herein of ΔH* provides a psychometric hue difference independent of chroma, valid for large and small psychometric color differences regardless of chroma. However, for small chromas, the seldom used metric ΔC might be a better color difference metric than ΔH* because complex appearance effects make the perceptual discrimination of lightness, chroma, and hue components more difficult than for high chromas.  相似文献   

19.
The aim of this study was to investigate the effect of microwave output power and sample amount on color change kinetics of celery leaves (Apium graveolens L.) during microwave heating. The color parameters of the materials were quantified by the Hunter Lab system. These values were also used for calculation of the total color change, chroma, hue angle, and browning index. The microwave heating process changed color parameters of L, a, and b, causing a color shift towards darker region. The mathematical modeling study of color change kinetic showed that L, a, b, and chroma fitted to a first-order kinetic model, while total color change (ΔE), hue angle, and browning index (BI) followed a zero-order kinetic model. For calculation of the activation energy for color change kinetic parameters, the exponential expression based on the Arrhenius equation was used.  相似文献   

20.
“Visual clarity” or “feeling of contrast” of object colors under illumination is affected significantly by changing color‐rendering property of light source used. Though the feeling of contrast is considered one of the most important characteristics on color‐rendering properties of light sources, it cannot be estimated adequately by using the present Ra method. The new index FCI is proposed for estimating the effect of feeling of contrast quantitatively under any light sources. The FCI is derived using a simple transformation of the gamut area, which is constituted by a specially selected four‐color combination in CIE LAB color space. The FCI correlates well with the illuminance ratio for equal feeling of contrast (or equal visual clarity) on various light sources reported so far. Using the FCI together with the present CIE Ra, the color‐rendering capability of a light source can be well clarified. © 2007 Wiley Periodicals, Inc. Col Res Appl, 32, 361–371, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号