首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrahigh molecular weight polyethylene (UHMWPE) fiber/carbon fiber hybrid composites were prepared by inner‐laminar and interlaminar hybrid way. The mechanical properties, dynamic mechanical analysis (DMA), and morphologies of the composites were investigated and compared with each other. The results show that the hybrid way was the major factor to affect mechanical and thermal properties of hybrid composites. The resultant properties of inner‐laminar hybrid composite were better than that of interlaminar hybrid composite. The bending strength, compressive strength, and interlaminar shear strength of hybrid composites increased with an increase in carbon fiber content. The impact strength of inner‐laminar hybrid composite was the largest (423.3 kJ/m2) for the UHMWPE fiber content at 43 wt % to carbon fiber. The results show that the storage modulus (E′), dissipation factor (tan δ), and loss modulus (E″) of the inner‐laminar hybrid composite shift toward high temperature remarkably. The results also indicate that the high‐performance composite with high strength and heat resistance may be prepared by fibers' hybrid. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1880–1884, 2006  相似文献   

2.
Native corn starch‐ and hydroxypropylated starch (HPS‐) based plastic films were prepared using the short pulp fiber as the reinforcement and the glycerol as the plasticizer. The results of tensile test showed that the strain and stress at break and elastic modulus increased with pulp content. With glycerol content, the strain at break increased considerably, but the breaking stress and elastic modulus decreased. And the stress–strain curves showed that the brittleness problem of films was overcome by the pulp, glycerol, and water content. The hydroxypropyl starch films showed results similar to those of the native starch films. The results of the three‐point bending test showed that maximum deflection, flexural strength, and specific work increased with pulp content, but the flexural modulus was the highest at a pulp content of 20%. And with the glycerol content, the maximum deflection and specific work of rupture increased, but the bending elastic modulus decreased. The hydroxypropyl starch films showed results similar to those of native starch films as far as the maximum deflection and flexural strength were concerned, but the bending elastic modulus and specific work of the hydroxypropyl starch films were considerably lower than those of starch films. So it was concluded that the flexibility of films was improved by the hydroxypropylation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2108–2117, 2003  相似文献   

3.
Bamboo fiber (BF)-reinforced starch/polypropylene (PP) composites were prepared by extrusion and injection molding methods. The mechanical and thermal properties and water absorption were evaluated by different methods. Moreover, composite samples were subjected to biodegradation through soil burial test and microbes medium degradation. Different stages of biodegradation were investigated by weight loss, attenuated total reflection Fourier transformed infrared spectroscopy, differential scanning calorimeter, and scanning electron microscope. It was found that contents of BF and starch resin had a significant influence on the properties of the composites. With more content of BF, the composite exhibited a better flexural property and biodegradation. A distinct decrease of weight loss and mechanical properties indicated the degradation caused by the microbes. After biodegradation, thermal stability of the composites decreased while the crystallinity of PP increased. The results prove that the composites more easily tend to be degraded and assimilated by microbes. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48694.  相似文献   

4.
We investigated the mechanical and physical characteristics of composites composed of polyacetal [alternatively called polyoxymethylene (POM)] and cellulose fiber (CelF) derived from wood pulp [10–52 wt % (9.3–50.1 vol %)] without any fiber surface treatment. The modulus, deflection temperature under load, and thermal conduction coefficient of the POM/CelF composites were effectively enhanced with increasing CelF content, and the composites had an advantage of specific modulus compared to glass fiber (GF)‐filled POM. The flexural modulus of POM/CelF 40 wt % (38.2 vol %) was measured to be about 6 GPa, which was comparable to that of POM/GF 20 wt % (12.1 vol %). In the composites, the CelFs were distributed randomly as monofilaments, and the debonding of the interface between the fibers and POM matrices in the fracture faces was confirmed as less by scanning electron microscopy observation. The POM/CelF composites possessed lower specific wear rates than the POM/GF composites, and they had damping behaviors near that of neat POM. No clear dependence of the melt flow index of the base POM on these characteristics was observed, except on Charpy impact strength. The composites studied here were unique in their performance and ability to be designed in accordance with specific demands, and they could be potential replacements for mineral‐filled and GF‐filled POM composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
This paper is to study the effect of basalt fiber on morphology, melting and crystallization, structure, mechanical properties, melting and crystallization of PVDF/PMMA composites using scanning electron microscopy (SEM), X‐ray, differential scanning calorimeter (DSC), dynamical mechanical analysis (DMA), etc. Basalt fiber may disperse well in PVDF/PMMA matrix and form compact fiber network, and this makes tensile and flexural strength of fiber reinforced PVDF/PMMA composites get to the maximum value of 62 and 102 MPa, respectively. However, the mechanical properties begin to decrease when basalt fiber content exceeds 20 wt %. The α and β phase of PVDF can coexist in composites, and basalt fiber and PMMA can induce β phase of PVDF. The melting temperature of PVDF in composites is kept unchanged, but the degree of crystallinity of composites increases as basalt fiber content increase, and then declines when fiber content exceeds 20%. The DSC results confirm that the nucleation ability of PVDF is enhanced by basalt fiber. Also, the heat resistance of PVDF/PMMA composite is improved from 133 to 146.1°C due to basalt fiber. The DMA shows that basalt fiber increases the storage modulus of PVDF/PMMA composite, and the loss peak of PMMA increases from 116.1 to 130°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40494.  相似文献   

6.
Basalt fabric (BF) was first treated with silane coupling agent KH550, modified basalt fabric (MBF) was obtained. Then MBF were molded with polypropylene (PP) matrix, and polypropylene/modified basalt fabrics (PP/MBF) composites were obtained. The influence of concentration and treating time of KH550 on MBF were characterized by hydrophilicity and lipophilicity. The tensile strength and morphology of basalt fabric were tested by single filament strength tester and scanning electron microscopy. The mechanical properties of composites were measured with electronic universal testing machine and impact testing machine, and the thermal properties were tested by thermogravimetric analysis and dynamic mechanical analysis. The results showed that the lipophilicity of MBF is improved significantly by KH550 while the tensile is nearly damaged. The mechanical properties of composites are larger than that of pure PP, among which the impact property was improved the most, showing 194.12% enhancement. The thermal stability and dynamic viscoelasticity were better than pure PP; furthermore, the concentration of KH550 virtually had no effect on the thermal stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42504.  相似文献   

7.
This paper presents a temperature‐dependent model for predicting the tensile strength of 2D woven fiber reinforced ceramic matrix composites. The model takes into account the combined effects of temperature, temperature‐dependent residual thermal stress, temperature‐dependent matrix strength, and fibers strength on the tensile strength of composites. To verify the model, the tensile strengths of 2D woven fiber reinforced ceramic matrix composites available are predicted at different temperatures. The model predictions agree well with the experimental data. This work could provide a practical technical means for predicting the temperature‐dependent tensile strength of 2D woven fiber reinforced ceramic matrix composites and uncovering the dominated mechanisms leading to the change of tensile strength and their evolution with temperature.  相似文献   

8.
Polypropylene/wood fiber composites were prepared at three different temperatures: 170°C, 180°C, and 190°C. The surface of wood fibers was modified through the use of silane coupling agents and/or coating with polypropylene or maleated polypropylene. The fiber coating was performed by propylene polymerization in the presence of wood fibers or by immersion in an o-dichlorobenzene polypropylene (or maleated polypropylene) solution. Tensile and three-point bending tests were performed in order to evaluate the adhesion between matrix and wood fibers. Evidence shows that 180°C is the best mixing temperature, while the use of vinyl-tris (2-methoxy ethoxy) silane with or without maleated polypropylene coating is the best surface treatment. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1227–1235, 1997  相似文献   

9.
In this article, truly degradable composites were prepared using sweet sorghum fibers which are residue of ethanol fermentation industry as reinforcement and renewable resource‐based biodegradable polyester, poly(L ‐lactide) (PLLA) as matrix, they were fabricated by melt‐blending. The effect of different kinds of pretreatments (dilute sulfuric acid pretreatment, mild alkaline/oxidative pretreatment, steam explosion pretreatment) on mechanical properties of composites were investigated. Besides the composition of untreated and treated fibers as determined by Van soest method, Fourier transformed infrared (FTIR) spectroscopic and scanning electron microscopic (SEM) were also used to study the change of sweet sorghum fibers before and after pretreatments. Mechanical properties testing indicated that tensile strength and impact strength of PLLA/treated fibers were improved except the dilute sulfuric acid pretreated fibers reinforced PLA composite. The mild alkaline/oxidative pretreated fiber reinforced PLA composite showed highest tensile strength of 46.12 MPa and impact strength of 8.02 kJ/m2 which was 15.5 and 33% higher than that of the control. The SEM of impact fracture surface and DMTA test were carried out to investigate the interfacial morphology and interfacial adhesion between the fiber and matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Green composites composed of regenerated cellulose (lyocell) fabric and biodegradable polyesters [poly(3‐hydroxybutyrate‐co‐3‐hydroxyvarelate) (PHBV), poly(butylene succinate) (PBS), and poly(lactic acid) (PLA)] were prepared by compression‐molding method. The tensile moduli and strength of all the biodegradable polyester/lyocell composites increased with increasing fiber content. When the obtained PLA/lyocell composites were annealed at 100°C for 3 h, the tensile strength and moduli were lowered despite the increase of degree of crystallization of the PLA component. The SEM observation of the composites revealed that the surface of the annealed composite has many cracks caused by the shrinkage of the PLA adhered to lyocell fabric. Multilayered PLA/lyocell laminate composites showed considerably higher Izod impact strength than PLA. As a result of the soil viral test, although the order of higher weight loss for the single substance was lyocell > PHBV > PBS > PLA, the biodegradability of the green composites did not reflect the order of a single substance because of the structural defect of the composite. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3857–3863, 2004  相似文献   

11.
The present study investigates the tensile, flexural, notched Izod impact, and water absorption properties of bagasse and beech reinforced polypropylene (PP) composites as a function of fiber content. The surface of fibers was modified through the use of maleated polypropylene (MAPP) coupling agent. From this study, it was found that mechanical properties increase with an increase in fiber loading in both cases. However, the addition of wood fibers resulted in a decrease in impact strength of the composites. The water absorption property at varying fiber loading was evaluated and found maximum for the BA/PP composites. The weight gains for all specimens were less than 7%. In general, the results showed the usefulness of bagasse fiber as a good alternative and reinforcing agent for composite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Sisal fibers were used for the reinforcement of a polypropylene (pp) matrix. Composites consisting of polypropylene reinforced with short sisal fibers were prepared by melt‐mixing and solution‐mixing methods. A large amount of fiber breakage was observed during melt mixing. The fiber breakage analysis during composite preparation by melt mixing was carried out using optical microscopy. A polynomial equation was used to model the fiber‐length distribution during melt mixing. The experimental mechanical properties of sisal/PP composites were compared with existing theoretical models such as the modified rule of mixtures, parallel and series models, the Hirsch model, and the Bowyer–Baders model. The dependence of the tensile strength on the angle of measurement with respect to fiber orientation also was modeled. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 602–611, 2003  相似文献   

13.
Resol resin composites reinforced with alkali‐treated bamboo strips were fabricated with a hand‐lay‐up technique. This study was aimed at the evaluation of the influence of the caustic concentration on the mechanical properties of bamboo‐strip‐reinforced resol composites with a constant 50% loading of the reinforcement. The treatment of bamboo fiber in a solution of sodium hydroxide with increasing concentration percentages resulted in more and more rigid composites; as a result, the strength and modulus values exhibited improvements. The maximum improvement in the properties was possibly achieved with 20% caustic treated reinforcements. An infrared study indicated the formation of aryl alkyl ether with ? OH groups of cellulose and methylol groups of resol. Beyond 20%, there was degradation in all the strength properties due to the failure of the mechanical properties of the reinforcement itself. A correlation was found to exist between the mechanical properties and the morphology that developed. Another set of composites with variable loadings of 20% alkali treated fiber (40, 50, and 60%) was fabricated, and a 60% fiber loading showed the best mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
In this work, composites from eucalyptus fiber (EF) and polyurethane emulsion (PU) were prepared. Ethyl cellosolve-blocked polyisocyanate (EC-bp) was used as a novel adhesive and the mechanical and water absorption properties of the prepared composites were analyzed. The results showed that the tensile, flexural, and water resistance properties of the composites modified by such adhesive were enhanced compared with those of unmodified ones. Effects of EC-bp on the thermal degradation and the morphology of the composites were also investigated and compared. The presence of modification on the surface of EC-bp treated EF/PU composites was identified by Fourier transform infrared spectroscopy (FTIR) from the appearance of CO bands absorbance and the reducing of relative intensity of OH. Thermo-gravimetric analysis (TGA) resulted that the thermal stability of the modified composites was improved. Environmental scanning electron microscopy (ESEM) was used to observe the morphology and evaluate the interfacial adhesion of the composites. The results showed that much better homogeneity morphology of the modified composites was achieved, which indicated that the prepared EC-bp as an adhesive could improve the interfacial adhesion. These findings appeared that the occurrence of strong bonds between the composite components in the presence of EC-bp, rather than the unique existence of Van der Waals interactions among the nonpolar structures or the hydrogen bonding interaction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
In this work, agave fibers were blended with polystyrene to produce foamed and unfoamed composites. The effect of fiber size and density reduction on the morphological, thermal, mechanical, and rheological properties, as well as crystallinity and water absorption kinetics of the composites was assessed. The results show that Young's modulus and tensile strength increased with increasing fiber content, but decreased with density reduction. Increasing fiber content and decreasing the size of the fibers both increased crystallinity of the composites. Finally, water uptake and diffusion coefficient were found to increase with increasing fiber content for all sizes. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
This research work investigates the tensile strength and elastic modulus of the alumina nanoparticles, glass fiber, and carbon fiber reinforced epoxy composites. The first type composites were made by adding 1–5 wt % (in the interval of 1%) of alumina to the epoxy matrix, whereas the second and third categories of composites were made by adding 1–5 wt % short glass, carbon fibers to the matrix. A fourth type of composite has also been synthesized by incorporating both alumina particles (2 wt %) and fibers to the epoxy. Results showed that the longitudinal modulus has significantly improved because of the filler additions. Both tensile strength and modulus are further better for hybrid composites consisting both alumina particles and glass fibers or carbon fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39749.  相似文献   

17.
In this work, composites of an EVA polymer matrix and short sisal fiber were characterized. The physical‐morphological as well as chemical interactions between EVA and sisal were investigated. When the samples were prepared in the presence of dicumyl peroxide, the results suggest that crosslinking of EVA as well as grafting between EVA and the sisal fibers took place. Morphological changes were studied by scanning electron microscopy (SEM). Results from Hg‐porosimetry, SEM, Fourier transform infrared spectroscopy, surface free energy, and gel content strongly indicate grafting of EVA onto sisal under the composite preparation conditions, even in the absence of peroxide. The grafting mechanism could not be confirmed from solid‐state 13C NMR analysis. The grafting had an impact on the thermal and mechanical properties of the composites, as determined by differential scanning calorimetry and tensile testing. Thermogravimetric analysis results show that the composites are more stable than both EVA and sisal fiber alone. The composite stability, however, decreases with increasing fiber content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1607–1617, 2006  相似文献   

18.
Because of their high‐specific stiffness, carbon‐filled epoxy composites can be used in structural components in fixed‐wing aircraft. Graphene nanoplatelets (GNPs) are short stacks of individual layers of graphite that are a newly developed, lower cost material that often increases the composite tensile modulus. In this work, researchers fabricated neat epoxy (EPON 862 with Curing Agent W) and 1–6 wt % GNP in epoxy composites. The cure cycle used for this aerospace epoxy resin was 2 h at 121°C followed by 2 h at 177°C. These materials were tested for tensile properties using typical macroscopic measurements. Nanoindentation was also used to determine modulus and creep compliance. These macroscopic results showed that the tensile modulus increased from 2.72 GPa for the neat epoxy to 3.36 GPa for 6 wt % (3.7 vol %) GNP in epoxy composite. The modulus results from nanoindentation followed this same trend. For loadings from 10 to 45 mN, the creep compliance for the neat epoxy and GNP/epoxy composites was similar. The GNP aspect ratio in the composite samples was confirmed to be similar to that of the as‐received material by using the percolation threshold measured from electrical resistivity measurements. Using this GNP aspect ratio, the two‐dimensional randomly oriented filler Halpin–Tsai model adjusted for platelet filler shape predicts the tensile modulus well for the GNP/epoxy composites. Per the authors' knowledge, mechanical properties and modeling for this GNP/epoxy system have never been reported in the open literature. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
As the material properties of acrylonitrile–butadiene–styrene copolymer (ABS) have an excessively wide margin for applications in automobile console boxes, ABS partly replaced with poly(l ‐lactic acid) (PLA) may be used for the same purpose with improved ecofriendliness if the corresponding deterioration of the material properties is acceptable through the choice of appropriate additives. ABS composites with 30 wt % renewable components (PLA and cellulose pulp) were prepared by melt compounding, and the material properties were examined as a function of the additive content. The changes in the mechanical properties of the ABS/PLA blends were examined after the addition of cellulose pulp and two clays [Cloisite 25A (C25A) and sodium montmorillonite] as well as these two clays treated with bis(3‐triethoxysilylpropyl)tetrasulfide (TESPT). The heat distortion temperatures of the composites were measured as a function of the content of the TESPT‐treated C25A. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40329.  相似文献   

20.
The purpose of this project was to obtain new composites using filler and resin obtained from renewable resources, combining low cost and good mechanical properties. The matrix consisted of a polyester resin synthesized from linseed oil and further crosslinked with styrene in a peroxide‐initiated reaction. Composite materials made from the unsaturated polyester/styrene thermoset and containing various percentages of woodflour were prepared and tested. The relationships between the filler content, porosity fraction, and mechanical properties of the materials were evaluated. The bending modulus and strength of the composites were significantly higher than that of the matrix. Simple models were successfully applied in the analysis of the mechanical properties of the materials. The porosity effect was also considered in the model predictions. The results of the mechanical and dynamic mechanical tests, the scanning electron micrographs of surface fractures, and the adhesion parameter calculated from the strength models all indicated that there was a strong interfacial interaction between matrix and filler. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号