首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《分离科学与技术》2012,47(14):3213-3228
Abstract

The process of PdCl4 2? and PtCl6 2? separation extracting from binary hydrochloric mixtures as well as palladium(II) extraction from individual solutions by bulk liquid membranes containing diphenylthiourea and di‐o‐tolylthiourea in 1,2‐dichloroethane is studied at galvanostatic electrodialysis. The effects of the current density, the composition of the liquid membrane and of aqueous solutions on the rate of the metal transport are determined. It is shown that an effective separation of Pt(IV) from Pd(II) is achieved in the presence of an excess of the carrier. Maximum separation factor βPt/Pd of 380 is obtained in 1 hour of electrodialysis under optimal conditions. The transport of platinum(IV) is supposed to occur in the form of ionic associates (PdL4Cl)2PtCl6. Platinum(IV) concentration and composition of the strip solution do not exert a considerable influence on the separation factor.  相似文献   

2.
The retention of various metal ions by water‐soluble poly(4‐vinylpyridine) methyl iodide in conjunction with ultrafiltration membrane was investigated. The method is based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molecular weight species from the polymer metal ion complex formed. It is shown that the polychelatogen can bind silver(I) and mercury(II) ions in aqueous solution at pH 1. At higher pH, the water‐soluble polymer can be applied to the separation and preconcentration of silver metal ions. Therefore, this polychelatogen is highly selective to Hg(II) at pH 1 with respect to metal ions such as Cd(II) and Zn(II). © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2578–2582, 2001  相似文献   

3.
The free‐radical copolymerization of water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) was carried out with a feed monomer ratio of 75:25 mol %, and the total monomer concentration was 2.67M. The synthesis of the copolymer was carried out in dioxane at 70°C with benzoyl peroxide as the initiator. The copolymer composition was obtained with elemental analysis and 1H‐NMR spectroscopy. The water‐soluble polymer was characterized with elemental analysis, Fourier transform infrared, 1H‐ and 13C‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymer were performed. The thermal behavior of the copolymer and its complexes were investigated with differential scanning calorimetry (DSC) and thermogravimetry techniques under a nitrogen atmosphere. The copolymer showed high thermal stability and a glass transition in the DSC curves. The separation of various metal ions by the water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) reagent in the aqueous phase with liquid‐phase polymer‐based retention was investigated. The method was based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molar‐mass species from the polymer/metal‐ion complex formed. Poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) could bind metal ions such as Cr(III), Co(II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) in aqueous solutions at pHs 3, 5, and 7. The retention percentage for all the metal ions in the polymer was increased at pH 7, at which the maximum retention capacity could be observed. The interaction of inorganic ions with the hydrophilic polymer was determined as a function of the pH and filtration factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 178–185, 2006  相似文献   

4.
Although microfluidic solvent extraction (µSX) is a recent field in separation, its application is still limited to single‐channel microfluidic devices. However, the industrial application of microheat exchangers has already proven that parallelization of microchannels is an important tool to increase the specific device efficiency. Hence, in this study, a multichannel system for µSX is introduced. As a model process, D,L‐5‐phenylhydantoin was extracted from ethyl acetate into aqueous buffer. By means of different experimental setups, the potential and limitations of membrane‐supported multichannel µSX were investigated. The reactor dimensions perpendicular to flow and transmembrane mass transport are the most challenging factors for the introduced device.  相似文献   

5.
A novel Hg(II) ion‐imprinted resin based on thiourea‐modified melamine was manufactured for selective elimination of Hg2+ from aqueous solutions. The polymerizable thiourea–melamine ligand together with its Hg(II) complex were extensively investigated using elemental analysis, Fourier transform infrared (FTIR) and 1H NMR spectroscopies. The Hg(II) complex was used in a condensation polymerization in the presence of formaldehyde crosslinker and then the Hg(II) ions were leached out from the crosslinked polymeric network to finally leave the ion‐imprinted Hg‐PMTF resin. Both ion‐imprinted Hg‐PMTF and non‐imprinted resins were examined utilizing scanning electron microscopy and FTIR spectroscopy. The potential of the prepared resin for selective separation of Hg(II) ions from aqueous solutions was then evaluated by performing a series of batch experiments. Hg‐PMTF displayed an obvious rapid removal of Hg(II) ions with a pseudo‐second‐order kinetic pattern. In addition, the Langmuir adsorption isotherm model exhibited the best fit with the experimental data with comparatively high maximum adsorption capacity (360.5 mg g?1). © 2015 Society of Chemical Industry  相似文献   

6.
BACKGROUND: Amino acids (AAs) are usually produced commercially using chemical, biochemical and microbiological fermentation methods. The product obtained from these methods undergoes various treatments involving extraction and electrodialysis (ED) for salt removal and AA recovery. This paper describes an electro‐membrane process (EMP) for the charge based separation of amino acids. RESULTS: Iso‐electric separation of AAs (GLU–LYS) from their mixture, using ion‐ exchange membranes (IEMs) has been achieved by an efficient and indigenous EMP. It was observed that electro‐transport rate (flux) of glutamic acid (GLU) at pH 8.0 (above its pI) was extremely high, while that for lysine (LYS) (pH 9.6) across the anion‐exchange membrane (AEM) was very low, under similar experimental conditions. Under optimum experimental conditions, separation of GLU from GLU–LYS mixture was achieved with moderate energy consumption (12.9 kWh kg?1), high current efficiency (CE) (65%) and 85% recovery of GLU. CONCLUSIONS: On the basis of the electro‐transport rate of AA and membrane selectivity, it was concluded that the separation of GLU–LYS mixture was possible at pH 8.0, because of the oppositely charged nature of the two amino acids due to their different pI values. Moreover, any type of membrane fouling and deterioration in membrane conductivity was ruled out under experimental conditions. This work clearly demonstrates the great potential of EMP for industrial applications. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
In situ generated copper(II)‐diimine complexes combined with TEMPO (2,2,6,6‐tetramethylpiperidinyl‐1‐oxyl radical) were studied in the oxidation of benzylic alcohols, the focus being on enviromentally benign reaction conditions. In this respect, reactions were studied in aqueous alkaline solutions and dioxygen was used as an end oxidant. This simple catalytic system turned out to be highly efficient and selective in the oxidation of primary and secondary benzylic alcohols to their corresponding carbonyl compounds. Under optimised reaction conditions [5 mol % of TEMPO, 3 mol % of copper(II ) diimine, pH 12.6–13.5, 80 °C, 10 bar O2] benzyl alcohol was quantitatively and selectively oxidised to benzaldehyde. According to ESI‐MS studies, coordination of TEMPO, as well as deprotonated benzyl alcohol to the parent copper‐diimine complex in aqueous solutions is feasible. Supported by these observations a plausible reaction mechanism is proposed for the oxidation reaction.  相似文献   

8.
The extraction and stripping of Co(II), Ni(II), Cr(III) and Fe(III) from aqueous solutions by rosin dissolved in toluene has been investigated. Results obtained show that rosin is better extractant than abietic or n-lauric acids under comparable conditions. From these results, and the data of Mn(II) solvent extraction studied previously under the same conditions, a separation and concentration process for these five cations in aqueous solutions has been designed. Saturated solutions of Fe(III), Cr(III), Mn(II) and finally Co(II) and Ni(II) have been obtained successively by extraction and stripping, by addition of ammonium hydroxide to obtain the appropriate pH value, and by modifying adequately the organic phase/aqueous phase volume ratio.  相似文献   

9.
Thin‐layer molecularly imprinted polymer (MIP) composite membranes for selective binding of monocrotophos (MCP) pesticide from aqueous solutions were developed. The procedure was based on commercially available membrane modules that were rinsed with prepolymerization imprinting mixtures. After the in situ polymerization and generation of MIP films on the membranes within the modules, the membranes were evaluated in terms of affinity toward the target molecule MCP. MIP membranes with different porogens and different monomers on Nylon‐6 membranes were prepared. It was shown that MIP membranes synthesized with methacrylic acid as monomer and toluene as porogens on the Nylon‐6 membranes provided a highly selective binding of MCP from aqueous solutions under the optimized elution conditions. With the novel surface modification technique, the low nonspecific binding properties of the microfiltration membrane could successfully be combined with the receptor properties of molecular imprints, yielding substance‐specific MIP composite membranes. The high affinity of these synthetic membranes to MCP pesticide together with their straightforward and inexpensive preparation could be applied in a fast preconcertration step, solid‐phase extraction, by a simple microfitration for the determination of MCP in water. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4468–4473, 2006  相似文献   

10.
BACKGROUND: During the last two decades, separations based on liquid membrane technology have been demonstrated to be a potentially attractive process for a large number of industrial separations. The advantages of this technology over the current separation processes allowed its commercialization in the area of chemical/environmental applications (for the removal of toxic metals). Efforts are being devoted to biotechnological processes where membrane extraction has an added advantage of improving the productivity by removing inhibitory product during its production cycle. In this article the applicability of a membrane extraction technique based on hollow‐fibre membrane modules is investigated to extract a new antibiotic, Shengjimycin (SJM). SJM is produced in a multicomponent fermentation broth, from which the main components required to be separated selectively. RESULTS: From equilibrium experiments, sunflower oil, a cheap and less toxic solvent, was found to be good for the extraction of SJM at its natural pH of 7.2–7.8. Addition of a small amount (1.5%) of Amberlite LA‐2 (a carrier) in the solvent could intensify the process to achieve a high distribution coefficient. The process using this organic phase (Amberlite LA‐2 in sunflower oil) gave good extraction (ca 70%) within 3–4 h in a pilot‐scale hollow‐fibre membrane module. This new system is preferred over the toxic solvents being used or tried because of its cost, less toxicity, low environmental impact and operator‐friendliness. CONCLUSIONS: Because of the above‐mentioned favourable characteristics this membrane extraction method has the potential to be sustainable and effective as it has shown selective separation of the desired component from a multicomponent mixture. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
In comparison with conventional chemical treatment methods for Fe(II) ions, adsorption and ion exchange are considered more easily applicable and economical, depending on the material used. Polymeric materials are the examples used in these commonly applied removal processes. In this study, the adsorption of Fe(II) ions from aqueous solutions onto two different natural polymers, insoluble humic acids (IHAs) extracted from low‐grade lignites from Beysehir and Ermenek (in the central Anatolia region, Konya, Turkey), was investigated. The IHAs were synthesized through a series of acid–base reactions, and the obtained precipitates were chemically stable and had about 40% humic matter together with functional carboxyl and hydroxyl groups. The effects of the time and initial metal concentration on the effectiveness of the IHAs for Fe(II) adsorption were determined through batch experiments; the adsorption isotherms and capacities were calculated. The IHAs were effective, with capacities of 59 mg/g for the Beysehir IHA and 57 mg/g for the Ermenek IHA, for Fe removal under neutral pH conditions. The adsorption followed mainly a Freundlich isotherm for both IHAs, and the calculated adsorption rates were 0.86 for the Beysehir IHA and 0.81 for the Ermenek IHA. This indicated that the effectiveness of the Beysehir IHA was slightly higher than that of the Ermenek IHA. The results confirmed the real possibility of the practical application of IHAs for the separation of Fe(II) in aqueous systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
The liquid–liquid extraction of Hg(II) from acidic chloride solutions has been studied using bis‐2‐ethylhexyl sulfoxide (B2EHSO) as an extractant. For comparison, extraction studies have also been carried out using di‐n‐octyl sulfoxide (DOSO) and diphenyl sulfoxide (DPhSO). The extraction data have been analysed by both graphical and theoretical methods taking into account aqueous phase speciation and all plausible complexes extracted into the organic phase. These results demonstrate that Hg(II) is extracted into xylene as HgCl2.3R2SO (where R2SO represents the sulfoxide). The equilibrium constant of the extracted complex has been deduced by non‐linear regression analysis. The developed liquid–liquid extraction procedure has been applied for the recovery of mercury from the brine‐sludge of a Chlor‐Alkali plant. © 2001 Society of Chemical Industry  相似文献   

13.
BACKGROUND: R‐mandelic acid is an important chiral pharmaceutical intermediate, which is commonly obtained by biotransformation. This work has focused on using novel chiral recognition technology, aqueous two‐phase extraction, for the chiral separation of mandelic acid. RESULTS: The copper (II) formed a 2:1 complex with β‐CD in an alkaline solution, which was isolated from solution by the addition of ethanol. The complex structure was characterized by IR and UV spectroscopy. The chiral recognition system was established by adding Cu2‐β‐CD into the triton‐114 aqueous two‐phase extraction system, which preferentially recognizes the (R)‐enantiomer rather than the (S)‐enantiomer. Factors affecting the extraction mechanism were analyzed, namely the concentration of Cu2‐β‐CD and tritonX‐114, the types of salts, pH, and temperature. It was found that the concentration of Cu2‐β‐CD and temperature were the most important influencing factors for chiral separation of mandedlic acid. The experimental results showed that the ee values increased with pH and concentration of trition‐114, and the maximum ee was 67.91%. The addition of inorganic salt had a strong influence on ee, which decreased when salt was added into the aqueous two‐phase extraction system. CONCLUSION: A novel chiral recognition technology ‐ aqueous two phase extraction is reported in this paper.The tritonX‐114 aqueous two phase system have a good recognition ability for mandelic acid. Copyright © 2012 Society of Chemical Industry  相似文献   

14.
Macroporous monoliths, composed of thermoresponsive, tertiary‐aminated, and crosslinking monomers, were prepared for continuous‐flow separation of palladium(II) ions. N ‐Isopropylacrylamide was required to form the porous structure in the monoliths, indicating that the mechanism of porous structure formation involved polymerization‐induced phase separation of the poly(N ‐isopropylacrylamide) gel. Tertiary‐aminated monoliths showed adsorption selectivity for palladium(II) ions in hydrochloric media, compared with copper(II) ions. The maximum capacities of the monoliths with tertiary amine contents of 10, 20, 30, and 70 mol % for palladium(II) ions were 0.6, 1.1, 1.3, and 2.3 mmol/g, respectively. Darcy's permeabilities of water through the macroporous monolith were 10?14 to 10?13 m2, and those were comparable to that through a commercially available membrane filter with a pore size of several micrometers. In the continuous‐flow process, the macroporous monolith with tertiary amine selectively adsorbed palladium(II) ions in the coexistence of copper(II) ions with 10 times higher concentration than the palladium(II) ions. The palladium(II) ions were eluted from the macroporous monolith, and the concentration of palladium(II) ions in the eluate was up to 45 times of that in the feed solution. The average enrichment factor and total recovery percentage of palladium(II) ions were 8.7 times and 95%, respectively. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44385.  相似文献   

15.
A novel macroporous resin was prepared from epoxy resin and triethylenetetramine through a polymerization with phase separation. In this experiment, the polyethylene glycol (PEG‐1000) plays a very important part. It was used as solvent, as phase‐separation reagent in the preparation processes, and as the pore‐forming reagent through removing PEG‐1000 from polymer by water‐cleaning process after completing polymerization. The prepared resin was modified by carbon bisulfide and soaked in 1 mol L?1 NaOH. Its structure was characterized by Fourier transform‐infrared spectra, scanning electron microscopy, and elemental analysis. The adsorption characteristic of the chelating resin was studied by series of experiments. The results show that the chelating resin possesses excellent adsorption characteristic toward trace Hg(II). The recovery can come to 100% when the concentration of Hg(II) is only 0.05 ppm, and the average maximum adsorption capacity of the chelating resin for Hg(II) is 122 mg g?1. The precision (relative standard deviation) for six replicate adsorbent extraction of 0.01 μg mL?1 Hg(II) was 1.1%. The accuracy of the proposed procedure was verified by analyzing a standard reference material. Moreover, the chelating resin was applied to two natural samples and also got satisfactory results. That is to say, the chelating resin modified by carbon bisulfide exhibits a high chelating ability toward Hg(II) and can be used as adsorbent for preconcentration and removal of trace Hg(II) in aqueous solution. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:2372–2378, 2006  相似文献   

16.
Waste streams generated by electroless copper plating in the printed circuit boards manufacturing industry often contain copper complexed by strong chelating agents such as EDTA. The consequence of metal complexation by chelating agents is that alternative treatment to chemical precipitation is often necessary to achieve the low metal concentrations required by increasingly stringent environmental regulations. This paper examines the feasibility of using activated carbon to remove EDTA‐chelated copper(II) species as well as free copper(II) ions from aqueous solution. The adsorption characteristics of copper(II) and EDTA‐chelated copper(II) on two granular activated carbons prepared from coal and coconut shell were evaluated. Adsorption equilibrium data of copper(II) on the two carbons corresponded well to the Langmuir model. The coconut shell‐based carbon exhibited a greater adsorption capacity for copper(II) than the coal‐based carbon under similar experimental conditions. Solution pH had a considerable influence on copper(II) adsorption by the two carbons. Low adsorption levels of copper(II) at pH 3 and high adsorption levels in the pH range of 4–6 were observed. However, a reverse adsorption trend was observed when the chelating agent EDTA was added to the copper(II) solution. Adsorption of EDTA‐chelated copper(II) by the two carbons was higher at pH 3 than at pH 6. The contrasting adsorption behaviour of copper(II) ions and EDTA‐chelated copper(II) species can be readily explained in terms of electrostatic interaction in that solution pH influences the surface charge of the carbons as well as the charge property of copper(II) ions and EDTA‐chelated copper(II) species. © 2000 Society of Chemical Industry  相似文献   

17.
In this article, we report on the extraction of Sr(II) ions from aqueous solution with a series of poly(N‐vinyl imidazole)‐based hydrogels. The hydrogels were synthesized by the crosslinking of N‐vinyl imidazole with four different crosslinkers with γ rays as initiators. The well‐characterized hydrogels were used as Sr(II) sorbents. Sr(II) uptake was determined with a colorimetric method with Rose Bengal anionic dye. Scanning electron microscopy–energy‐dispersive spectroscopy analysis of the Sr(II)‐loaded polymers was recorded to ascertain the uptake of Sr(II) ions. The experimental adsorption values were analyzed with the Freundlich and Temkin equations, and the kinetics of adsorption were investigated with a pseudo‐second‐order sorption kinetic model. The results show that the equilibrium data fit well in the Freundlich isotherm and followed a pseudo‐second‐order kinetic model. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Poly[(2‐hydroxyethyl)‐DL ‐aspartamide] was synthesized by polyreaction of aspartic acid and subsequent polymer‐analogous functionalization with ethanolamine. The water‐soluble polymer was characterized by FTIR, NMR, TGA and light‐scattering measurements. The metal complexing properties of the polymer were studied for Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II) and Pb(II) ions in aqueous solution using the liquid‐phase polymer‐based retention (LPR) method. According to the retention profiles of LPR, Cr(III), Fe(III), Cu(II) and Pb(II) showed a strong interaction with this polymer under these conditions, indicated by retention values of about 100 %. In contrast, Co(II), Ni(II), Zn(II), Sr(II) and Cd(II) exhibited retention values of only 50–60 % in dilute solution at pH 5. © 2000 Society of Chemical Industry  相似文献   

19.
A novel sulfonated polyphenylsulfone (sPPSU)/polyphenylsulfone (PPSU)‐based dual‐layer hollow fiber membrane with a nanometric thin skin layer has been designed for biofuel dehydration via pervaporation. The thickness of skin selective layer is in the range of 15–90 nm under different spinning conditions measured by positron annihilation spectroscopy (PAS) coupled with a mono‐energetic positron beam. The effects of outer‐layer dope properties, coagulation temperature, and dope flow rate during spinning were systematically investigated. By tuning these spinning parameters, a high performance sPPSU/PPSU‐based dual‐layer hollow fiber membrane with desirable morphology was successfully obtained. Particularly owing to its nanometric thin skin layer, a high flux of 3.47 kg/m2h with a separation factor of 156 was achieved for dehydration of an 85 wt % isopropanol aqueous solution at 50°C. After post thermal treatment at 150°C for 2 h, the separation factor was dramatically improved to 687 while flux dropped to 2.30 kg/m2h, which make it comparable to the inorganic membranes. In addition, excellent correlations were found among the results from field emission scanning electron microscopy, PAS spectra, and separation performance. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2943–2956, 2013  相似文献   

20.
Functionalised SBA‐15 mesoporous silica with polyamidoamine groups (PAMAM‐SBA‐15) was successfully prepared with the structure characterised by X‐ray diffraction, nitrogen adsorption–desorption, Fourier transform infrared spectra and thermogravimetric analysis. PAMAM‐SBA‐15 was applied as adsorbent for Cu(II), Pb(II) and Cd(II) ions removal from aqueous solution. The effects of the solution pH, adsorbent dosage and metal ion concentration were studied under the batch mode. The Langmuir model was fitted favourably to the experimental data. The maximum sorptive capacities were determined to be 1.74 mmol g?1 for Cu(II), 1.16 mmol g?1 for Pb(II) and 0.97 mmol g?1 for Cd(II). The overall sorption process was fast and its kinetics was fitted well to a pseudo‐first‐order kinetic model. The mean free energy of sorption, calculated from the Dubinin–Radushkevich isotherm, indicated that the sorption of lead and copper, with E > 16 kJ mol?1, followed the sorption mechanism by particle diffusion. The adsorbent could be regenerated three times without significant varying its sorption capacity. A series of column tests were performed to determine the breakthrough curves with varying bed heights and flow rates. The breakthrough data gave a good fit to the Thomas model. Maximum sorption capacity of 1.6, 1.3 and 1.0 mmol g?1 were found for Cu(II), Pb(II) and Cd(II), respectively, at flow rate of 0.4 mL min?1 and bed height of 8 cm, which corresponds to 83%, 75% and 73% of metallic ion removal, respectively, which very close to the value determined in the batch process. Bed depth service time model could describe the breakthrough data from the column experiments properly. © 2012 Canadian Society for Chemical Engineering  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号