首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Semi‐interpenetrating polymer network (semi‐IPN) films with different NCO/OH molar ratios of the urethane prepolymer, coded as UB, were prepared from polyurethane (PU) and benzyl konjac glucomannan (B‐KGM) by a casting method. The effect of the NCO/OH molar ratio of the urethane prepolymer on the miscibility and properties of the UB films was investigated using Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, thermogravimetric analysis, and swelling and tensile tests. The results indicated that, with an increase of the NCO/OH ratio, the crosslink density of the UB films increased, resulting in improved miscibility between PU and B‐KGM and a relatively high light transmittance of the UB films. However, the thermal stability of the UB films decreased with increase of the NCO/OH ratio of the urethane prepolymer, due to the depolymerization of the urethane bonds of the PU networks. When the NCO/OH ratio increased from 2 to 4, the tensile strength of the UB films increased from 15 to 27 MPa, while the breaking elongation decreased from 72 to 16%, resulting from the chemical and physical crosslinks, namely, the enhancement of the covalent bonds and hydrogen‐bonding networks. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1304–1310, 2003  相似文献   

2.
A series of novel blend films of deacetylated konjac glucomannan (d‐KGM) and Chitosan hydrochloride (CHI·HCl) were prepared successfully by using the solvent‐casting technique with different blending ratios of the two polymers. The miscibility and aggregation structure of the blend films were studied by Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction and scanning electron microscopy. The results indicated that the blend system of d‐KGM and CHI·HCl had a conditional miscibility. A new crystal occurred and hydrogen‐bonding interaction was strengthened when the CHI·HCl content in the blend films was 40%. The effects of deacetylation degree of KGM, acids (the solvent Chitosan dissolved in), temperature, and the mix ratio on the swelling behavior of the blend films were also studied. The blend film KC3 (CHI·HCl content in the blend films was 30%) had not only the highest equilibrium swelling degree (26 times) but also the highest tensile strength, and it could be regarded as a potential absorbent film material. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Blend films of konjac glucomannan (KGM) and poly(vinylpyrrolidone) (PVP) were prepared by using a conventional solvent‐casting technique and dried at room temperature. The structure and physical properties were studied by infrared spectroscopy (IR), wide‐angle X‐ray diffraction (WAXD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscope (SEM), and by measurement of mechanical properties. The changes of carbonyl stretching bands of KGM and PVP and hydroxyl stretching region of KGM were detected by FTIR analysis. WAXD analysis revealed that the film KP‐2 got the lowest crystallinity of all the films. The tensile strength and breaking elongation of the blend films reaches the maximum value at 10 wt % PVP content. The DTA curves indicated the existence of interaction between two kinds of macromolecules. Higher thermal stability was attained by konjac glucomannan through blending with PVP. These improvements are attributable to the existence of a certain degree of interaction between KGM and PVP molecules resulted from intermolecular hydrogen bonds. Air surface morphology of the films observed by SEM was consistent with the results mentioned above. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1049–1055, 2001  相似文献   

4.
Novel nanostructured, high transparent, and pH sensitive poly(2‐hydroxyethyl methacrylate‐co‐methacryliac acid)/poly(vinyl alcohol) (P(HEMA‐co‐MA)/PVA) interpenetrating polymer network (IPN) hydrogel films were prepared by precipitation copolymerization of aqueous phase and sequential IPN technology. The first P(HEMA‐co‐MA) network was synthesized in aqueous solution of PVA, then followed by aldol condensation reaction, it formed multiple IPN nanostructured hydrogel film. The film samples were characterized by IR, SEM, DSC, and UV‐vis spectrum. The transmittance arrived at 93%. Swelling and deswelling behaviors showed the multiple IPN nanostuctured film had rapid response. The mechanical properties of all the IPN films improved than that of PVA film. Using crystal violet as a model drug, the release behaviors of the films were studied. The results showed that compared with PVA, which had low drug loading and exhibited high and burst release, the three IPN films had high drug loading and exhibited sustained release. Besides, the release followed different release mechanism at pH = 4.0 and pH = 7.4, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Konjac glucomannan(KGM)/poly(vinyl alcohol)(PVA)/Na+ modified rectorite (Na+REC) nanocomposite films were obtained by using a casting/solvent evaporation method. The structures and microstructures of KGM/PVA/Na+REC composite films were analyzed by FTIR, XRD, SEM and TEM. A wide variety of material characteristics for the KGM/PVA/Na+REC composite films were investigated, including the mechanical property, optical transmittance and thermal stability. The results revealed that by adding PVA more well-intercalative/exfoliated structure of composite film was obtained. As a result, the KGM/PVA/Na+REC composite film at low Na+REC and PVA content exhibited an improvement in mechanical properties and thermal stability due to a reinforcement effect. In vitro drug-controlled release studies showed a slower and more continuous release for KGM/PVA/Na+REC composite film in comparison with KGM/Na+REC composite film.  相似文献   

6.
Novel blend films of konjac glucomannan (KGM) with gelatin were prepared by using the solvent‐casting technique. Transparent blend films were obtained in all blending ratios of the two polymers. The structure and physical properties of the films were investigated by Fourier transform IR, wide angle X‐ray diffraction, thermogravimetric analysis, differential thermal analysis, scanning electron microscopy (SEM), and strength tests. The results indicated that intermolecular interactions between the KGM and gelatin occurred that were caused by hydrogen bonding and the physical properties of the films largely depended on the blending ratio. The crystallinities of the blend films decreased with the increase of the KGM. The thermal stability and mechanical properties (tensile strength and elongation at break) of the films were improved by blending KGM with gelatin. It is worth noting that the blend films had a good tensile strength of 38 MPa when the KGM content in the blend films was around 30 wt %. The surface morphology of the blend films observed by SEM displayed a certain level of miscibility. Furthermore, the water absorbability of the blend films was also measured and discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1596–1602, 2001  相似文献   

7.
Temperature and pH‐responsive interpenetrating polymer network (IPN) hydrogels, constructed with poly(methacrylic acid) (PMAA) and poly(vinyl alcohol) (PVA), by a sequential IPN method, were studied. The characterization of IPN hydrogels was investigated by Fourier‐transform infrared spectroscopy, differential scanning calorimetry (DSC) and swelling under various conditions. The IPN hydrogels exhibited relatively high swelling ratios, in the range 230–380 %, at 25 °C. The swelling ratios of the PMAA/PVA IPN hydrogels were pH and temperature dependent. DSC was used for the quantitative determination of the amounts of freezing and non‐freezing water. The amount of free water increased with increasing PMAA content in the IPN hydrogels. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
A novel preservative film was prepared by blending konjac glucomannan (KGM) and poly (diallydimethylammonium chloride) (PDADMAC) in aqueous system. The effects of PDADMAC content on the miscibility, morphology, thermal stability, and mechanical properties of the blend films were investigated by density determination, scanning electron microscopy (SEM), attenuated total reflection infrared spectroscopy (ATR‐IR), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and tensile tests. The results of the density determination predicted that the blends of KGM and PDADMAC were miscible when the PDADMAC content was less than 70 wt %. Moreover, SEM and XRD confirmed the result. ATR‐IR showed that strong intermolecular hydrogen bonds interaction occurred between the negative charge groups of KGM and the quaternary ammonium groups of PDADMAC in the blends. The tensile strength and the break elongation of the blends were improved largely to 106.5 MPa and 32.04%, when the PDADMAC content was 20 wt %. The thermal stability of the blends was higher than pure KGM. Results from the film‐coating preservation experiments with lichi and grapes showed that the blend film had excellent water‐holding and preservative ability. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Starch/poly(vinyl alcohol) (PVA) films with the addition of 10 wt% CaCl2 and various content of glycerol were prepared. The effect of glycerol on the crystalline, thermal, and tensile properties of CaCl2‐doped starch/PVA films was studied by X‐ray diffraction, thermogravimetric analysis (TGA), and tensile testing, respectively. The effect of glycerol on the miscibility of CaCl2‐doped starch/PVA films was studied by scanning electron microscopy. The CaCl2‐doped starch/PVA film became more homogeneous after the addition of glycerol. The addition of glycerol would increase the crystallinity of CaCl2‐doped starch/PVA film. With the addition of 10 wt% glycerol and 10 wt% CaCl2, the starch/PVA film showed the highest degree of crystallinity. The TGA results show that the thermal stability of CaCl2‐doped starch/PVA film increased after the addition of glycerol. The toughness of CaCl2‐doped starch/PVA films was enhanced with the addition of glycerol. The starch/PVA film with the addition of 10 wt% CaCl2 and 20 wt% glycerol showed the tensile strength of 17 MPa and the elongation at break of 428%. Moreover, the water sorption of CaCl2‐doped starch/PVA film decreased after the addition of glycerol at the low and intermediate relative humidity of 33 and 54%. POLYM. COMPOS., 37:3191–3199, 2016. © 2015 Society of Plastics Engineers  相似文献   

10.
The blend films of konjac glucomannan (KGM) and polyacrylamide (PAAm) were prepared by using the solvent‐casting technique. Transparent blend films were obtained in all blending ratios. The physical properties of the films were investigated by Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction, thermogravimetric analysis, scanning electron microscopy, and by measurement of mechanical properties. The results indicated the occurrence of intra‐ and intermolecular interactions of the pure components, as well as the intermolecular interactions between KGM and PAAm through hydrogen bond formation. The thermal stability and mechanical properties of both tensile strength and elongation at break of the films were improved by blending KGM with PAAm. It was worth noting that the blend film had the greatest tensile strength when the KGM content in the blend films was around 30 wt %. Surface morphology of the films observed by SEM was consistent with the above‐noted results. Furthermore, the water absorbability of the blend films was also investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 882–888, 2001  相似文献   

11.
To precisely identify the effect of blend ratios of syndiotacticity‐rich poly(vinyl alcohol) (s‐PVA)/atactic PVA (a‐PVA) on the water stability of s‐PVA/a‐PVA/iodine complex blend films, we prepared two PVAs with similar number‐averaged degrees of polymerization of 4000 and degrees of saponification of 99.9% and with different syndiotactic diad contents of 58.5 and 53.5%, respectively. The desorption behavior of iodine in s‐PVA/a‐PVA/iodine complex films in water was investigated in terms of the solubility of s‐PVA/a‐PVA blend films in water. The degree of solubility of s‐PVA/a‐PVA blend films with s‐PVA content over 50% in water at 70°C was limited to about 10–20%, whereas that of s‐PVA/a‐PVA blend films with s‐PVA content of 10% was 85% under the same conditions. The degree of iodine desorption of complex blend films decreased with increasing s‐PVA content. The degree of iodine desorption of s‐PVA/a‐PVA drawn film with s‐PVA content of 90% was limited to 7%, regardless of the soaking temperature from 30 to 70°C. The desorption of iodine in water was strongly affected by the dissolution of blends. Moreover, the stability of iodine in the drawn s‐PVA/a‐PVA/iodine blend films in hot water was far superior to that of the undrawn film. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1435–1439, 2004  相似文献   

12.
The purpose of this article is to investigate the effects of nano‐tianium dioxide (nano‐TiO2) on the high‐amylose starch/polyvingl alcohol (PVA) blend films prepared by a solution casting method. The results show that at the concentration of 0.6% of nano‐TiO2, the film demonstrated the best tensile strength at 9.53 MPa, and the elongation at break was noted as 49.50%. The optical transmittance of the film was decreased and the water resistance was improved with further increase of the concentration of nano‐TiO2. Using the techniques of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and field‐emission scanning electron microscopy (SEM), the molecular and the crystal structures of the films were characterized. The results indicate that the miscibility and compatibility between high‐amylose starch and PVA were increased with the addition of nano‐TiO2 into the films due to the formation of hydrogen and C? O? Ti bonds. The antimicrobial activities of the blend films were also explored. The results show that there were inhibitory zones around the circular film disc, which is attributable to the addition of nano‐TiO2. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42339.  相似文献   

13.
Blends of poly(vinyl alcohol) (PVA), poly(acrylic acid), (PAA), and poly(vinyl pyrrolidone) (PVP), with poly(N‐isopropylacrylamide) (PNIPAM), were prepared by casting from aqueous solutions. Mechanical properties of PNIPAM/PVA blends were analyzed by stress–strain tests. Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were employed to analyze the miscibility between the polymeric pairs. The results revealed that PNIPAM is not miscible with PVA and PVP in the whole range of composition. On the other hand, PNIPAM interacts strongly with PAA forming interpolymer complex due to the formation of cooperative hydrogen bonds. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 743–748, 2004  相似文献   

14.
An interpenetrating polymer network (IPN) hydrogel composed of poly(vinyl alcohol) (PVA) and chitosan exhibited electric‐sensitive behavior. The PVA/chitosan IPN hydrogel was synthesized by an ultraviolet (UV) irradiation method that is used in several biomedical and industrial fields. The swelling behavior of the PVA/chitosan IPN hydrogel was studied by immersion of the gel in NaCl aqueous solutions at various concentrations. The swelling ratio decreased with increasing concentration of NaCl solution. The stimuli response of the IPN hydrogel in electric fields was also investigated. When a swollen PVA/chitosan IPN was placed between a pair of electrodes, the IPN exhibited bending behavior in response to the applied electric field. The bending angle and the bending speed of the PVA/chitosan IPN increased with increasing applied voltage and concentration of NaCl aqueous solution. The PVA/chitosan IPN also showed stepwise bending behavior depending on the electric stimulus. In addition, thermal properties of PVA/chitosan IPN were investigated by differential scanning calorimetry (DSC) and dielectric analysis (DEA). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2285–2289, 2002  相似文献   

15.
通过硫酸水解魔芋葡甘聚糖(KGM)得到魔芋葡甘聚糖纳米晶(NKGM),再表面接枝3-(三甲氧基硅丙基)十八烷基氯化铵,与壬基酚聚氧乙烯醚硫酸钠反应等过程得到改性KGM纳米晶类流体(NKGMf);然后采用溶液流延法制备了含NKGM和NKGMf的聚乙烯醇(PVA)薄膜;通过傅里叶变换红外光谱仪、透射电子显微镜、扫描电子显微镜、热失重分析仪、拉伸测试仪等对NKGM、NKGMf的结构和PVA薄膜的性能进行表征。结果表明,经改性后,NKGM的片状结构得以保留,在PVA基质中的分散性增加,薄膜的起始分解温度提高了23℃,拉伸强度提高了34.7%,其中,NKGMf的最佳含量为3%(质量分数,下同)。  相似文献   

16.
Miscibility of binary and ternary polymer blends composed of thermotropic liquid crystalline polycarbonate (LCPC), poly(vinyl alcohol) (PVA), and chitosan was investigated by viscosity method, FTIR spectrum, and scanning electron microscope techniques. Effect of addition of chitosan as a compatibilizer on miscibility and morphology of binary LCPC/chitosan and PVA/chitosan and ternary LCPC/PVA/chitosan polymer blends was discussed. These measurements indicated that addition of chitosan into the blends of LCPC with PVA leads to an increase of miscibility and a formation of clear fibril structures on fractured surfaces, which are due to intermolecular hydrogen‐bonding interaction between LCPC, PVA, and chitosan chains. It was suggested that side‐chain hydroxy group of PVA and amino and hydroxy groups of chitosan play an important role in the formation of miscible phase and improvement of morphology in binary and ternary blends composed of LCPC, PVA, and chitosan. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1616–1622, 2004  相似文献   

17.
《Polymer Composites》2017,38(8):1720-1731
An interpenetrating polymer network (IPN) is a novel blend of two polymers at least one of which is synthesized or crosslinked in the immediate presence of the other so that there is the least possibility of any gross phase separation. Full‐IPNs, prepared from poly(vinyl alcohol) and polyacrylamide, have shown superior performances over the conventional individual polymers. The ranges of applications have grown rapidly for such class of materials. Cellulose nanoparticles extracted from sugarcane bagasse in‐house are used to reinforce this PVA/PAAm (80:20) full‐IPN in different proportions during the synthesis of IPN. The characteristics of this new series of IPN composite materials have been evaluated by Fourier transform infrared spectroscopic analysis, mechanical, thermal (thermogravimetric analysis and differential scanning calorimetry), and scanning electron microscopy techniques. A loading of 5 wt% of nanocellulose lead to the highest tensile strength amongst the different IPN composite films. Although the non‐reinforced full‐IPN and the various reinforced composites with nanocelluloses are almost identical in their thermal stability, they prove to be much superior compared to the neat polymers. POLYM. COMPOS., 38:1720–1731, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
Polyurethane‐nitrolignin (PUNL), a new network polymer, was synthesized from a castor oil based–polyurethane (PU) prepolymer and nitrolignin (NL) with a weight‐average molecular weight of 20.6 × 104 and a content of 1.4–10%. The structure and miscibility of PUNL films prepared by solution casting were investigated by infrared spectroscopy and transmission electron microscopy. The results indicated that PUNL2 film, which had a 2.8% NL content, was the most miscible, and its tensile strength (σb) and breaking elongation (?b) were 2 times higher than that of PU film. The crosslink densities of PUNL films increased with the increase of NL content until about 3%, similar to the variety of the mechanical properties. Thermogravimetric analysis revealed that the thermal stability of PUNL films was slightly higher than that of PU. Covalent bonds occurred between PU prepolymer and the NL in the PUNL films, forming crosslink networks, which resulted in the enhancement of mechanical properties and thermal stability. NL has a far higher reactivity with PU than nitrocellulose. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1213–1219, 2001  相似文献   

19.
Starch‐based plastic films were prepared by the electron beam irradiation of starch and poly(vinyl alcohol) (PVA) in a physical gel state at room temperature. The influence of starch/PVA composition, irradiation dose, and plasticizer (glycerol) on the properties of the plastic films was investigated. The gel fraction of the starch/PVA films increased with both the radiation dose and PVA content in the plastic film and decreased with increasing glycerol concentration. The starch/PVA compatibility was determined by measurement of the thermal properties of the starch/PVA blends with various compositions with differential scanning calorimetry. The swelling of the starch/PVA films increased with increasing PVA content and decreasing irradiation dose. Mechanical studies were carried out, and the tensile strength of the films decreased at high starch ratios in the starch‐based mixture. This was due to the decrease in the degree of crosslinking of starch. Furthermore, when PVA, a biodegradable and flexible‐chain polymer, was incorporated into the starch‐based films, the properties of the films, such as the flexibility (elongation at break), were obviously improved. The tensile strength of the films decreased with increasing glycerol concentration, but elongation at break increased up to a maximum value at a 20% glycerol concentration, and then, it leveled off and decreased slightly. Biodegradation of the starch/PVA plastic films was indicated by weight loss (%) after burial in soil and morphological shape, which was detected by scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 504–513, 2007  相似文献   

20.
The present work adds to the continuing efforts of designing a natural bone‐like structure by synthesizing a semi‐interpenetrating polymer network (IPN) of poly(vinyl alcohol)–poly[(acrylic acid)‐co‐acrylonitrile] and impregnating hydroxyapatite (HAP) into the polymer matrix by an alternate soaking process. The prepared HAP–polymer scaffolds were characterized using techniques like Fourier transform infrared spectroscopy, X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis and environmental scanning electron microscopy. The biomineralized semi‐IPN was evaluated for water sorption capacity and the data were utilized for calculating network parameters such as average molecular weight between crosslinks (Mc) and crosslink density (q). The impregnated HAP was quantified as a function of the chemical architecture of the semi‐IPN, number of reaction cycles and temperature of the swelling bath. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号