首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The selective hydrogenation of acetylene to ethylene over Pd‐Ag/α‐Al2O3 catalysts prepared by different impregnation/reduction methods was studied. The best catalytic performance was achieved with the sample prepared by sequential impregnation. A kinetic model based on first order in acetylene and 0.5th order in hydrogen for the main reaction and second‐order independent decay law for catalyst deactivation was used to fit the conversion time data and to obtain quantitative assessment of catalyst performances. Fair fits were observed from which the reaction and deactivation rate constants were evaluated. Coke deposition amounts showed a good correlation with catalyst deactivation rate constants, indicating that coke formation should be the main cause of catalyst deactivation.  相似文献   

2.
Novel microfibrous‐structured silver catalysts were developed for gas‐phase selective oxidation of mono‐/aromatic‐/di‐alcohols. Sinter‐locked three‐dimensional microfibrous networks consisting of 5 vol % 8‐μm‐Ni (or 12‐μm‐SS‐316L) fibers and 95 vol % void volume were built up by the papermaking/sintering processes. Silver was then deposited onto the surface of the sinter‐locked fibers by incipient wetness impregnation method. At relatively low temperatures (e.g., 380°C), the microfibrous‐structured silver catalysts provided quite higher activity/selectivity compared to the electrolytic silver. The microfibrous Ag/Ni‐fiber offered much better low‐temperature activity than the Ag/SS‐fiber. The interaction at Ag particles and Ni‐fiber interface not only visibly increased the active/selective sites of Ag+ ions and Agnδ+ clusters but also significantly promoted their low‐temperature reducibility and ability for O2 activation. In addition, the microfibrous structure provided a unique combination of large void volume, entirely open structure, high thermal conductivity and high permeability. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

3.
Volatile organic compounds (VOCs) are one of the main contributors to air pollution. To reduce anthropogenic emissions, it is necessary to improve existing techniques such as catalytic oxidation through the development of new cost‐effective catalysts. Although many studies deal with the development and testing of new materials, most are performed at laboratory scale, of which only a few study mixtures of VOCs. To assess their viability for industrial applications, further tests are required, namely, mixture tests at intermediate scale in relevant environment and extrapolated on an industrial scale. In this work, the catalytic performance of a new mixed oxide Co‐Al‐Ce was investigated towards the oxidation of the n‐butanol and toluene on a semi‐pilot scale (TRL 4). Single component and mixture experiments were performed for several concentrations at a fixed flow rate. A commercial catalyst Pd/γ‐Al2O3 was used as the benchmark to evaluate the performance of the mixed oxide. The Co‐Al‐Ce catalyst enables complete oxidation of n‐butanol at the same temperature as the reference catalyst. Moreover, it provides a better selectivity for n‐butanol, while providing an equivalent one for the oxidation of toluene. In mixtures, the presence of n‐butanol promotes the oxidation of toluene for both catalysts but more significantly for the Co‐Al‐Ce catalyst. The presence of toluene inhibits the oxidation of n‐butanol for the Co‐Al‐Ce and promotes it for high conversions of n‐butanol for the Pd/γ‐Al2O3 catalyst.  相似文献   

4.
Microstructured Ag‐based catalysts were developed by galvanically depositing Ag onto 80‐μm‐Cu‐fibers for the gas‐phase oxidation of alcohols. By taking advantages including large voidage, open porous structure and high heat/mass transfer, as‐made catalysts provided a nice combination of high activity/selectivity and enhanced heat transfer. The best catalyst was Ag‐10/80‐Cu‐fiber‐400 (Ag‐loading: 10 wt%; Cu‐fiber pretreated at 400 °C in air), being effective for oxidizing acyclic, benzylic and polynary alcohols. For benzyl alcohol, conversion of 94% was achieved with 99% selectivity to benzaldehyde at 300 °C using a high WHSV of 20 h?1. Computational fluid dynamics (CFD) calculation and experimental result illustrated significant enhancement of the heat transfer. The temperature difference from reactor wall to central line was about 10–20 °C for the Ag‐10/80‐Cu‐fiber‐400, much lower than that of 100–110 °C for the Ag‐10‐Cu‐2/Al2O3 at equivalent conversion and selectivity. Synergistic interaction between Cu2O and Ag was discussed, being assignable to the activity improvement. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1045–1053, 2014  相似文献   

5.
Hydrogenation of 4‐chloro‐2‐nitrophenol (CNP) was carried out at moderate hydrogen pressures, 7–28 atm, and temperatures in the range 298–313 K using Pt/carbon and Pd/γ‐Al2O3 as catalysts in a stirred pressure reactor. Hydrogenation of CNP under the above conditions gave 4‐chloro‐2‐aminophenol (CAP). Dechlorination to form 2‐aminophenol and 2‐nitrophenol is observed when hydrogenation of CNP is carried out above 338 K, particularly with Pd/γ‐Al2O3 catalyst. Among the catalysts tested, 1%Pt/C was found to be an effective catalyst for the hydrogenation of CNP to form CAP, exclusively. To confirm the absence of gas–liquid mass transfer effects on the reaction, the effect of stirring speed (200–1000 rpm) and catalyst loading (0.02–0.16 g) on the initial reaction rate at maximum temperature 310 K and substrate concentration (0.25 mole) were thoroughly studied. The kinetics of hydrogenation of CNP carried out using 1%Pt/C indicated that the initial rates of hydrogenation had first order dependence with respect to substrate, catalyst and hydrogen pressure in the range of concentrations varied. From the Arrhenius plot of ln rate vs 1000/T, an apparent activation energy of 22 kJ mol?1 was estimated. © 2001 Society of Chemical Industry  相似文献   

6.
The enantioselective 1,4‐addition of arylboronic acids to β‐arylenones to give β‐diaryl ketones was carried out at 0–25 °C in the presence of a dicationic palladium(II) catalyst, [Pd(S,S‐chiraphos)(PhCN)2](SbF6)2. Addition of a silver salt such as silver tetrafluoroborate [AgBF4] or silver hexafluoroantimonate [AgSbF6] (5–10 mol %) was effective to achieve high enantioselectivities at low temperatures (92–99 % ee) and to reduce the catalyst loading to 0.05 mol %. The protocol provided a simple access to 4‐aryl‐4H‐chromenes. Optically active chromenes were synthesized with up to 99 % ee via dehydration of the 1,4‐adducts between arylboronic acids and β‐(2‐hydroxyaryl)‐α,β‐unsaturated ketones.  相似文献   

7.
The kinetics of the liquid‐phase catalytic hydrogenation of p‐chlorobenzophenone have been investigated over a 5 % Pd/C catalyst. The effects of hydrogen partial pressure (800–2200 kPa), catalyst loading (0.4–1.6 gm dm–3), p‐chlorobenzophenone concentration (0.37–1.5 mol dm–3), and temperature (303–313 K) were studied. A stirring speed > 20 rps has no effect on the initial rate of reaction. Effects of various catalysts (Pd/C, Pd/BaSO4, Pd/CaCO3, Pt/C, Raney nickel) and solvents (2‐propanol, methanol, dimethylformamide, toluene, xylene, hexane) on the hydrogenation of p‐chlorobenzophenone were also investigated. The reaction was found to be first order with respect to hydrogen partial pressure and catalyst loading, and zero order with respect to p‐chlorobenzophenone concentration. Several Langmuir‐Hinshelwood type models were considered and the experimental data fitted to a model involving reaction between adsorbed p‐chlorobenzophenone and hydrogen in the liquid phase.  相似文献   

8.
Simple and efficient protocols for the 10% palladium on carbon (Pd/C)‐catalyzed cross‐coupling reactions between triarylbismuths and aryl halides have been developed. A variety of iodo‐ and bromobenzenes possessing an electron‐withdrawing group on the aromatic nucleus were smoothly cross‐coupled in the presence of 10% Pd/C, sodium phosphate dodecahydrate (Na3PO4⋅12 H2O) and 1,4‐diazabicyclo[2.2.2]octane (DABCO) in heated N‐methyl‐2‐pyrrolidone (NMP) as the solvent. For the arylations of iodobenzenes, the reactions effectively proceeded under the combined use of caesium fluoride (CsF) and 2,2′‐biquinoline. Furthermore, a ligand‐free 10% Pd/C‐catalyzed cross‐coupling reaction between the aryl iodides and triarylbismuths was also established by the addition of tetra‐n‐buthylammonium fluoride trihydrate (TBAF⋅3 H2O) in which the palladium metals were hardly leached from the catalyst into the reaction media.  相似文献   

9.
Anatase and rutile TiO2 were used for preparation of the TiO2 supported Pd and Pd–Ag catalysts for selective hydrogenation of acetylene. It was found that Pd/TiO2-anatase exhibited higher acetylene conversion and ethylene selectivity than rutile TiO2 supported ones. However, addition of Ag to Pd/TiO2-anatase catalyst resulted in lower ethylene selectivity while that of Pd/TiO2-rutile increased. It is suggested that Ag addition suppressed the beneficial effect of the Ti3+ sites presented on the anatase TiO2 during selective acetylene hydrogenation whereas without Ti3+, Ag promoted ethylene selectivity by blocking sites for over-hydrogenation of ethylene to ethane.  相似文献   

10.
Hydrogen production by partial oxidation and steam reforming (POSR) of n‐octane was investigated over alumina‐supported Ni and Ni‐Pd catalysts. It showed that Ni‐Pd/Al2O3 had higher activity and hydrogen selectivity than the nickel catalyst under the experimental conditions, which indicated Ni‐Pd/Al2O3 could be an effective catalyst for the production of hydrogen from hydrocarbons.  相似文献   

11.
Carbon-supported bimetallic PdAg catalysts with Pd/Ag atomic ratios varying from 4/1 to 1/2 were prepared by an impregnation–reduction method. The impregnated black mixture was treated in H2/N2 atmosphere at a temperature varying from 180 to 500 °C. The obtained PdxAgy/C catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV) and chronoamperometry (CA). XRD results show that the lattice constant of Pd is dilated, suggesting the formation of PdAg alloy. The lattice constant of Pd for the PdxAgy/C-500 (reduced at 500 °C by H2) increases linearly and the average metal particle size decreases slightly from 6.8 to 5.1 nm with increasing Ag fractions from 20% to 67% in the PdAg composition. For PdxAgy/C catalysts with a certain specific Pd/Ag atomic ratio, e.g., Pd2Ag1/C, the dilated lattice constant of Pd is independent of the reducing temperature, indicating the alloy degree for the Pd2Ag1/C-t catalysts is comparable. The average metal particle size for the Pd2Ag1/C-t catalysts increases from 3.4 to 5.2 nm with H2 reduction temperature increasing from 180 to 500 °C. The potentiodynamic measurements on ethanol electrooxidation reaction (EOR) show that the catalytic activities for the PdxAgy/C-t catalysts toward the EOR are improved by alloying Pd with Ag. At typical potential of a working fuel cell, e.g., −0.4 V vs. Hg/HgO, the EOR current density presents a volcano shape as a function of the Ag fractions in PdAg with the maximum occurs at the Pd/Ag atomic ratios between 2/1 and 3/1. The CA tests show that the PdxAgy/C-500 catalysts perform high stability than that of Pd/C-500. The improved EOR activity for the PdxAgy/C-t catalysts, compared with whether Pd/C or Ag/C catalyst, may possibly be attributed to the formation of PdAg alloy and the fitted particle size.  相似文献   

12.
The Pd/ZrC–C and Pd/ZrO2–C catalysts with zirconium compounds ZrC or ZrO2 and carbon hybrids as novel supports for direct formic acid fuel cell (DFAFC) have been synthesized by microwave‐assisted polyol process. The Pd/ZrC–C and Pd/ZrO2–C catalysts have been characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), energy dispersive analysis of X‐ray (EDAX), transmission electron microscopy (TEM), and electrochemical measurements. The physical characteristics present that the zirconium compounds ZrC and ZrO2 may promote the dispersion of Pd nanoparticles. The results of electrochemical tests show that the activity and stability of Pd/ZrC–C and Pd/ZrO2–C catalysts show higher than that of Pd/C catalyst for formic acid electrooxidation due to anti‐corrosion property of zirconium compounds ZrC, ZrO2, and metal–support interaction between Pd nanoparticles and ZrC, ZrO2. The Pd/ZrC–C catalyst displays the best performance among the three catalysts. The peak current density of formic acid electrooxidation on Pd/ZrC–C electrode is nearly 1.63 times of that on Pd/C. The optimal mass ratio of ZrC to XC‐72 carbon is 1:1 in Pd/ZrC–C catalyst with narrower particle size distribution and better dispersion on surface of the mixture support, which exhibits the best activity and stability for formic acid electrooxidation among all the samples.  相似文献   

13.
The synthesis of silica‐ and monolith‐supported Grubbs–Herrmann‐type catalysts is described. Two polymerizable, carboxylate‐containing ligands, exo, exo‐7‐oxanorborn‐2‐ene‐5,6‐dicarboxylic anhydride and 7‐oxanorborn‐2‐ene‐5‐carboxylic acid were surface‐immobilized onto silica‐ and ring‐opening metathesis (ROMP‐) derived monolithic supports using “grafting‐from” techniques. The “1st generation Grubbs catalyst”, RuCl2(CHPh)(PCy3)2, was used for these purposes. In addition, a poly(norborn‐2‐ene‐b‐exo, exo‐norborn‐2‐ene‐5,6‐dicarboxylic anhydride)‐coated silica 60 was prepared. The polymer supported anhydride and carboxylate groups were converted into the corresponding mono‐ and disilver salts, respectively, and reacted with the Grubbs–Herrmann catalyst RuCl2(CHPh)(IMesH2)(PCy3) [IMesH2=1,3‐bis(2,4,6‐trimethylphenyl)‐4,5‐dihydroimidazol‐2‐ylidene]. Heterogenization was accomplished by exchange of one chlorine ligand with the polymeric, immobilized silver carboxylates to yield monolith‐supported catalysts 4, 5 , and 6 as well as silica‐supported systems 7, 8 and 9 . The actual composition of these heterogenized catalysts was proven by the synthesis of a homogeneous analogue, RuCl[7‐oxanorbornan‐2‐(COOAg)‐3‐COO](CHPh)(IMesH2)(PCy3) ( 3 ). All homogeneous and heterogeneous catalysts were used in ring‐closing metathesis (RCM) of diethyl diallylmalonate, 1,7‐octadiene, diallyldiphenylsilane, methyl trans‐3‐pentenoate, diallyl ether, N,N‐diallyltrifluoracetamide and t‐butyl N,N‐diallylcarbamate allowing turnover numbers (TON's) close to 1000. In a flow‐through set‐up, an auxiliary effect of pendant silver carboxylates was observed with catalyst 5 , where the silver moiety functions as a (reversible) phosphine scavenger that both accelerates initiation and stabilizes the catalyst by preventing phosphine elution. Detailed catalytic studies were carried out with the monolith‐supported systems 4 and 6 in order to investigate the effects of temperature and chain‐transfer agents (CTA's) such as cis‐1,4‐diacetoxybut‐2‐ene. In all RCM experiments Ru‐leaching was low, resulting in a Ru‐content of the RCM products ≤3.5 μg/g (3.5 ppm).  相似文献   

14.
The allenyl p‐methoxybenzyl ketone 3a and allenyl p‐siloxybenzyl ketones 6b selectively delivered three different products with three different transition metal‐catalysts. With Hg(II)‐catalysts a spiro[4.5]decene 9 , with Ag(I)‐catalysts a 2‐substituted furan ( 10/11 ) and with Pd(II)‐catalysts a 2,4‐disubstituted furan ( 8/12 ) was formed. Only with perchloric acid the intermolecular addition of water to the allene, leading to 1,3‐dicarbonyl compounds 7 , was observed. While with the corresponding allenyl o‐methoxybenzyl ketone 3b the Ag(I)‐ and Pd(II)‐catalysts provided the expected products, the mercury‐catalyst led to a new and interesting side‐product rac‐ 17 which combined both the furan moiety and the spiro[4.5]decene moiety. Efforts to prepare allenyl hydroxybenzyl ketones failed, in one case a small amount of a 5H‐benzo[b]oxepin‐4‐one 21 was isolated. It also was not possible to extend the spirocyclization to allenyl p‐siloxyphenyl ketone 6a or allenyl 2‐(p‐siloxyphenyl)ethyl ketone 6c .  相似文献   

15.
Soluble poly[styrene‐co‐(acrylic acid)] (PSA) modified by magnesium compounds was used to support TiCl4. For ethylene polymerization, four catalysts were synthesized, namely PSA/TiCl4, PSA/MgCl2/TiCl4, PSA/(n‐Bu)MgCl/TiCl4, and PSA/(n‐Bu)2Mg/TiCl4. The catalysts were characterized by a set of complementary techniques including X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, scanning electron microscopy, and element analysis. Synthesis mechanisms of polymer‐supported TiCl4 catalysts were proposed according to their chemical environments and physical structures. The binding energy of Ti 2p in PSA/TiCl4 was extremely low as TiCl4 attracted excessive electrons from ? COOH groups. Furthermore, the chain structure of PSA was destroyed because of intensive reactions taking place in PSA/TiCl4. With addition of (n‐Bu)MgCl or (n‐Bu)2Mg, ? COOH became ? COOMg‐ which then reacted with TiCl4 in synthesis of PSA/(n‐Bu)MgCl/TiCl4 and PSA/(n‐Bu)2Mg/TiCl4. Although MgCl2 coordinated with ? COOH first, TiCl4 would substitute MgCl2 to coordinate with ? COOH in PSA/MgCl2/TiCl4. Due to the different synthesis mechanisms, the four polymer‐supported catalysts correspondingly showed various particle morphologies. Furthermore, the polymer‐supported catalyst activity was enhanced by magnesium compounds in the following order: MgCl2 > (n‐Bu)MgCl > (n‐Bu)2Mg > no modifier. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
GaN‐containing titanosilicate catalysts were used for the first time for the oxidative dehydrogenation (ODH) of n‐butane at a relatively low reaction temperature (460 °C). Commercially available GaN powder with a wurtzite crystal structure showed superior reactivity and stability for the ODH of n‐butane. The catalytic property of GaN catalyst for ODH strongly depends on the GaN particle size. The effects of the GaN weight percentage and GaN particle size on the catalytic performance are investigated in a fixed bed reactor. Based on the physicochemical properties of the catalyst characterized via TEM, DLS, N2 adsorption‐desorption, XRF, O2‐TPD, XRD, XPS, and in‐situ FTIR, the textural and structural properties of catalyst were obtained. The catalytic results reveal that the presence of GaN increases the activity of the catalysts, indicating that GaN can be used as a new active phase for the ODH of n‐butane. XRD, XPS, O2‐TPD, DLS, TEM, and in‐situ FTIR results show that activated O species exist on the surface of the GaN catalyst and enhance the catalytic performance with a decreasing GaN particle size, suggesting that smaller GaN particles possess a remarkable capability to activate O species in O2 and C‐H bonds in light alkanes.  相似文献   

17.
Heterogeneous palladium catalysts ([Pd(NH3)4]2+/NaY and [Pd]/SBA‐15) were applied to the synthesis of 2‐functionalised indoles, giving generally high conversions and selectivities (>89% yield) using only 1 mol % [Pd]‐catalyst under standard reaction conditions (polar solvent, 80 °C). For the synthesis of 2,3‐functionalised indoles by cross‐coupling arylation, the [Pd]/SBA‐15 catalyst was found to be particularly interesting, producing the expected compound with =35% yield after 12 days of reaction, which is comparable to the homogeneous catalyst, Pd(OAc)2 (=48% yield). In the course of the study, the dual reactivity of the indole nucleus was demonstrated: aryl bromides gave clean C C coupling while aryl iodides led to a clean C N coupling.  相似文献   

18.
Au, Ag and Au–Ag catalysts on different supports of alumina, titania and ceria were studied for their catalytic activity of ethylene oxidation reactions. An addition of an appropriate amount of Au on Ag/Al2O3 catalyst was found to enhance the catalytic activity of the ethylene epoxidation reaction because Au acts as a diluting agent on the Ag surface creating new single silver sites which favor molecular oxygen adsorption. The Ag catalysts on both titania and ceria supports exhibited very poor catalytic activity toward the epoxidation reaction of ethylene, so pure Au catalysts on these two supports were investigated. The Au/TiO2 catalysts provided the highest selectivity of ethylene oxide with relatively low ethylene conversion whereas, the Au/CeO2 catalysts was shown to favor the total oxidation reaction over the epoxidation reaction at very low temperatures. In comparisons among the studied catalysts, the bimetallic Au–Ag/Al2O3 catalyst is the best candidate for the ethylene epoxidation. The catalytic activity of the gold catalysts was found to depend on the support material and catalyst preparation method which govern the Au particle size and the interaction between the Au particles and the support.  相似文献   

19.
The performance of Ag-promoted Pd/Al2O3 catalysts, which were prepared by the selective deposition of Ag onto Pd using a surface redox (SR) method, during acetylene hydrogenation was compared with that of catalysts prepared by impregnation. The Pd surface was more effectively modified with Ag added by SR, even when small amounts of Ag were added. The catalyst prepared by SR showed a higher ethylene selectivity than the one prepared by impregnation, because SR allowed both the preferential deposition of Ag on the low-coordination sites of Pd and a greater electronic modification of Pd by Ag.  相似文献   

20.
Separation into narrow MWD fractions (liquid–liquid fractionation) and preparative TREF (temperature rising elution fractionation) with subsequent analysis of fractions by GPC, FTIR, and 13C NMR spectroscopy were used to study the comonomer distribution of ethylene/1–hexene copolymers produced over highly active supported titanium‐ and vanadium‐magnesium catalysts (TMC and VMC) and a supported zirconocene catalyst. These catalysts produce PE with different MWD: Mw/Mn values vary from 2.9 for zirconocene catalyst, 4.0 for TMC, and 15 for VMC. 1‐Hexene increases polydispersity to 25 for copolymer produced over VMC and hardly affects MWD of the copolymer produced over TMC and zirconocene catalysts. The most broad short chain branching distribution (SCBD) was found for ethylene/1–hexene copolymers produced over TMC. VMC and supported zirconocene catalyst produce copolymers with uniform profile of SCB content vs. molecular weight in spite of great differences in Mw/Mn values (22 and 2.5 respectively). TREF data showed that majority of copolymer produced over supported zirconocene catalyst was eluted at 70–90°C (about 85 wt %). In the case of VMC copolymer's fractions were eluted in the broad temperature interval (40–100°C). Accordingly, TREF data indicate a more homogeneous SCBD in copolymer, produced over supported zirconocene catalyst. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号