首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Novel heterogeneous cation‐exchange membranes using poly (ether sulfone)(PES) as binder and sulfonated poly(phenylene sulfide) (SPPS) powder as polyelectrolyte were prepared by the solution casting‐immersion method. Compared with a conventional route for heterogeneous membrane, the steps of milling resin into fine powders and the pressing at high temperature are avoided, and thus permits a simple technique for the preparation of such membrane. The effect of the particle size and loading of SPPS resin on the properties of the membranes such as ion‐exchange capacity, water content, electrical resistance, transport number, diffusion coefficient of electrolytes, etc., have been studied. It is shown that the membrane fundamental properties are largely dependent on both the resin loading and the particle size of SPPS resin. By adjusting these two important parameters, one can obtain heterogeneous membrane with both good conductivity, selectivity, and proper water content for different industrial purposes such as electrodialysis, diffusional dialysis, etc. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 167–174, 2004  相似文献   

2.
The effects of heat treatment on the properties of membranes prepared from blends of poly(ether sulfone)/sulfonated poly(phenylene sulfide) (SPPS) and phenolphthalein poly(ether ether ketone)/SPPS were studied in detail. The membranes' fundamental properties, including water content, transport number, diffusion coefficient of electrolytes, flux, and so on, changed with both treated temperature and time, whereas the ion‐exchange capacity and electrical resistance remained approximately unchanged. The trends may have been due to the possible structural change resulted from the shrinking of the polymers forming the membranes. Furthermore, the membranes also retained a good physical appearance at temperatures below 220°C. Therefore, a series of heterogeneous membranes with desired conductivities and selectivities as well as proper water contents, which could satisfy different industrial purposes, such as electrodialysis, diffusional dialysis, and proton exchange, were achieved by simple heat treatment for a proper time and at a proper temperature. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 494–499, 2005  相似文献   

3.
Simultaneously improving the proton conductivity and mechanical properties of a polymer electrolyte membrane is a considerable challenge in commercializing proton exchange membrane fuel cells. In response, we prepared a new series of miscible polymer blends and thus the corresponding crosslinked membranes based on highly sulfonated poly(ether ether ketone) and sulfonated polybenzimidazole. The blended membranes showed more compact structures, due to the acid‐base interactions between the two constituents, and improved mechanical and morphological properties. Further efforts by doping sulfonated graphene oxide (s‐GO) forming composite membranes led to not only significantly elevated proton conductivity and electrochemical performance, but also better mechanical properties. Notably, the composite membrane with the filler content of 15 wt % exhibited a proton conductivity of 0.217 S cm?1 at 80 °C, and its maximum power density tested by the H2/air single PEMFC cell at room temperature reached 171 mW cm?2, almost two and half folds compared with that of the native membrane. As a result, these polymeric membranes provided new options as proton exchange membranes for fuel‐cell applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46547.  相似文献   

4.
A series of sulfonated poly(ether ether ketone ketone)s derived from bisphenol S were prepared by nucleophilic polycondensation. They showed high thermal resistance and good solubility. Most of the polymers were easily cast into tough membranes. The swelling of the membranes (6.02–16.02%) was lower than that of Nafion membranes, and the ion‐exchange capacity of the membranes (0.67–1.44) was higher than that of Nafion membranes. The proton conductivity of the membranes was 0.022–0.125 s/cm. They could be used as proton‐exchange membranes in fuel cells. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1569–1574, 2004  相似文献   

5.
The mechanical properties of glass fiber-reinforced phenolphthalein poly(ether ketone)/ poly(phenylene sulfide) (PEK-C/PPS) composites have been studied. The morphologies of fracture surfaces were observed by scanning electron microscope. Blending a semicrystalline component, PPS, can improve markedly the mechanical properties of glass fiberreinforced PEK-C composites. These results can be attributed to the improvement of fiber/matrix interfacial adhesion and higher fiber aspect ratio. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Novel sulfonated poly(ether ether ketone ketone)s were prepared directly by nucleophilic polycondensation. They showed excellent thermal stability and good solubility and could be easily cast into tough membranes. The sulfonated membranes showed swelling of 16.08–26.71% and an ion‐exchange capacity of 1.01–1.57. The transport properties of different cations (H+, Na+, and K+) of membranes based on these polymers were evaluated. The potential for ion‐exchange membranes looks good. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2481–2486, 2005  相似文献   

7.
Crosslinked sulfonated poly(ether ether ketone) (SPEEK) membranes were prepared through the electron beam (EB)‐irradiation crosslinking of SPEEK/1,4‐butanediol under various irradiation conditions and used as a proton exchange membrane (PEM) for fuel cell applications. The crosslinked membranes were characterized by gel fraction, a universal testing machine (UTM), dynamic mechanical analysis (DMA), and small‐angle X‐ray scattering (SAXS). The gel fraction of the crosslinked membranes was used to estimate the degree of crosslinking, and the gel fraction was found to be increased with an increase of the crosslinker content and EB‐absorbed dose. The UTM results indicate that a brittle EB‐crosslinked membrane becomes more flexible with an increase in the crosslinker content. The DMA results show that the EB‐crosslinked membranes have well‐developed ionic aggregation regions and the cluster Tg of membranes decrease with an increase in the 1,4‐butanediol crosslinker content. The SAXS results show that the Bragg and persistence distance of crosslinked membranes increase with an increase in the crosslinker content. The proton conductivities of the EB‐crosslinked membranes were more than 9 × 10?2 S/cm. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41760.  相似文献   

8.
Sulfonated poly(vinyl alcohol) (PVA) for use as a proton conductive membrane in a direct methanol fuel cell (DMFC) was prepared by reacting the PVA with sulfoacetic acid and poly(acrylic acid). The effects of the amount of sulfoacetic acid and poly(acrylic acid) on proton conductivity, methanol permeability, water uptake, and ion exchange capacity (IEC) of the sulfonated PVA membranes were investigated by using impedance analysis, gas chromatography, gravimetric analysis, and titration techniques, respectively. The water uptake of the membranes decreased with the amount of the sulfoacetic acid and the amount of poly(acrylic acid) used. The proton conductivity and the IEC values of the membranes initially increased and then decreased with the amount of the sulfoacetic acid. The methanol permeability of the sulfonated PVA membranes decreased continuously with the amount of the sulfoacetic acid. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
The morphology of nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with poly (ether ether ketone) (PEEK) have been observed by polarized optical microscope (POM) equipped with a hot stage. The nonisothermal crystallization behavior of PPS and PEEK/PPS blend has also been investigated by differential scanning calorimetry (DSC). The maximum crystallization temperature for PEEK/PPS blend is about 15°C higher than that of neat PPS, and the crystallization rate, characterized by half crystallization time, of the PEEK/PPS blend is also higher than that of the neat PPS. These results indicate that the PEEK acts as an effective nucleation agent and greatly accelerates the crystallization rate of PPS. The Ozawa model was used to analyze the nonisothermal crystallization kinetics of PPS and its blends. The Avrami exponent values of neat PPS are higher than that of its blend, which shows that the presence of PEEK changed the nucleation type of PPS from homogeneous nucleation to heterogeneous nucleation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Microporous carbon membranes (MCM) were prepared from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) through stabilization and pyrolysis processes. The effects of sulfonation degree (SD) of SPPESK and the stabilization temperature on the structure and gas permeation of MCM were investigated. The thermal decomposition behavior of SPPESK was studied by thermogravimetric analysis‐mass spectrometry. The evolution of functional groups on membrane surface was detected by Fourier transform infrared spectroscopy during heat treatment. The resultant MCM was characterized by X‐ray diffraction, Raman spectroscopy, nitrogen adsorption technique and pure gas permeation test (including the gases of H2, CO2, O2, and N2), respectively. The results have shown that the removal of sulfonic acid groups in SPPESK leads to a weight loss stage in the temperature range of 250–450°C. The surface area, maximum pore volume, and gas permeability of MCM increase with the SD increasing from 59 to 75%, together with the reduction of selectivity. Similarly, the gas permeability of MCM also increases with elevating the stabilization temperature from 350 to 400°C at the loss of selectivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A novel series of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) were prepared by aromatic nucleophilic polycondensation with different ratios of 1,3‐bis(3‐sodium sulfonate‐4‐fluorobenzoyl)benzene to 1,3‐bis(4‐fluorobenzoyl)benzene. 1H‐NMR spectroscopy was used to confirm the degrees of sulfonation (DS) of the polymers. Thermal stabilities of the SPEEKKs in acid form were characterized by thermogravimetric analysis (TGA), which showed that SPEEKKs were excellently thermally stable at high temperatures. SPEEKK polymers can be easily cast into tough membranes. Both of proton conductivity and methanol diffusion coefficient have been tested in this article. Other properties of the SPEEKK membranes were investigated in detail. The results show that the SPEEKK membranes are promising in proton exchange membrane fuel cells (PEMFCs) application. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
采用流延法制备了聚醚砜(PES)含量不同的PES/磺化聚醚醚酮(SPEEK)共混膜。PES与SPEEK具有良好的相容性。所制备PES/SPEEK共混膜的含水率、溶胀度和甲醇透过系数均随PES含量的增加而降低。虽然共混膜的质子传导性能有所降低.但阻醇性能和溶胀性能提高,这说明PES/SPEEK共混膜是一种很好的直接甲醇燃料电池用固体高分子电解质膜材料。  相似文献   

13.
In this work, the properties of novel ionic polymer blends of crosslinked and sulfonated poly(vinyl alcohol) (PVA) and sulfonated poly(ether ether ketone) (SPEEK) are investigated. Crosslinking and sulfonation of PVA were carried out using sulfosuccinic acid (SSA) in the presence of dispersed SPEEK to obtain semi‐interpenetrating network blends. PVA–SSA/SPEEK blend membranes of different compositions were studied for their ion‐exchange capacity, proton conductivity, water uptake, and thermal and mechanical properties. The hydrated blend membranes show good proton conductivities in the range of 10?3 to 10?2 S/cm. When compared with pure component membranes, the PVA–SSA/SPEEK blend membranes also exhibit improvement in tensile strength, tensile modulus, and delay in the onset of thermal and chemical degradation. Semi‐interpenetrating nature of the blends is established from morphology and dynamic mechanical analysis. Morphology of the membranes was studied using scanning electron microscopy after selective chemical treatment. The dynamic mechanical properties of the membranes are examined to understand the miscibility characteristics of the blends. The relative proportions of PVA and SPEEK and the degree of crosslinking of PVA–SSA are important factors in determining the optimum properties for the blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
The miscibility and phase behavior of polysulfone (PSF) and poly(hydroxyether of bisphenol A) (phenoxy) with a series of copoly (ether ether ketone) (COPEEK), a random copolymer of poly(ether ether ketone) (PEEK), and phenolphthalein poly(ether ether ketone) (PEK-C) was studied using differential scanning calorimetry. A COPEEK copolymer containing 6 mol % ether ether ketone (EEK) repeat units is miscible with PSF, whereas copolymers containing 12mol % EEK and more are not. COPEEK copolymers containing 6 and 12 mol % EEK are completely miscible with phenoxy, but those containing 24 mol % EEK is partially miscible with phenoxy. Moreover, a copolymer containing 17 mol % EEK is partially miscible with phenoxy; the blends show two transitions in the midcomposition region and single transitions at either extreme. Two Tgs were observed for the 50/50 blend of phenoxy with the coplymer containing 17 mol % EEK, whereas a single composition-dependent Tg appeared for all the other compositions. An FTIR study revealed that there exist hydrogen-bonding interactions between phenoxy and the copolymers. The strengths of the hydrogen-bonding interactions in the blends of the COPEEK copolymers containing 6 and 12 mol % EEK are the same as that in the phenoxy/PEK-C blend. However, for the blends of copolymers containing 17, 24, and 28 mol % EEK, the hydrogen-bonding interactions become increasingly unfavorable and the self-association of the hydroxyl groups of phenoxy is preferable as the content of EEK units in the copolymer increases. The observed miscibility was interpreted qualitatively in terms of the mean-field approach. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Proton exchange membranes for a direct methanol fuel cell were prepared by blending poly(vinylidene fluoride) [PVDF] with sulfonated poly(etheretherketone) [SPEEK]. The effects of PVDF content on methanol permeability in the blend membranes were investigated by using a diffusion cell and gas chromatography technique. The thermal resistance and proton conductivity of the membranes were also determined by using a thermal gravimetric analysis (TGA) and an impedance analysis technique, respectively. It was found that methanol permeability in the blend membranes decreased with PVDF content at the expense of proton conductivity. The methanol permeability values of the blend membranes are much lower than that of Nafion 115, whereas proton conductivities of the membranes are comparable to that of Nafion. The thermal stability of these blend membranes are above 250°C which is sufficiently high for use in DMFC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5941–5947, 2006  相似文献   

16.
The behavior of sulfonated poly(ether ether ketone) (sPEEK) membranes in ethanol–water systems was studied for possible application in direct ethanol fuel cells (DEFCs). Polymer membranes with different degrees of sulfonation were tested by means of uptake, swelling, and ethanol transport with dynamic measurements (liquid–liquid and liquid–gas systems). Ethanol permeability was determined in an liquid–liquid diffusion cell. For membranes with an ion‐exchange capacity (IEC) between 1.15 and 1.75 mmol/g, the ethanol permeability varied between 5 × 10?8 and 1 × 10?6 cm2/s, being dependent on the measuring temperature. Ethanol and water transport in liquid–gas systems was tested with pervaporation as a function of IEC and temperature. Higher IEC accounted for higher fluxes and lower water/ethanol selectivity. The temperature had a large effect on the fluxes, but the selectivity remained constant. Furthermore, the membranes were characterized with proton conductivity measurements. The proton diffusion coefficient was calculated, and a transition in the proton transfer mechanism was found at a water number of 12. Membranes with high IEC (>1.6 mmol/g) exhibited larger proton diffusion coefficients in ethanol–water systems than in water systems. The membrane with the lowest IEC exhibited the best proton transport to ethanol permeability selectivity. The use of sPEEK membranes in DEFC systems depends on possible modifications to stabilize the membranes in the higher conductive region rather than on modifications to increase the proton conductivity in the stable region. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
This article investigates the comprehensive properties of sulfonated poly(phenylene oxide) (SPPO) membranes with different sulfonation degrees and presents the completion of previous work necessary for the application of SPPO membranes to proton‐exchange membrane fuel cells. The sulfonation level has been accurately determined by conductometric titration and 1H‐NMR, and the glass‐transition temperature has been obtained with both differential scanning calorimetry and dynamic mechanical thermal analysis. Sulfonic groups attached to the aromatic ring in the poly(phenylene oxide) backbone split at 220–340°C, but the main‐chain splitting temperature of SPPO is similar to that of the pure polymer. In addition, the effects of sulfonic groups and water on the tensile strength of these membranes have been studied. An increase in the sulfonate groups in the polymer results in an increase in the water uptake. Atomic force microscopy phase images of the acid‐form membranes clearly show the hydrophilic domains, and the ionic regions of the membranes with a low sulfonation degree are isolated and become connected to produce a cocontinuous morphology as the degree of sulfonation increases. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1244–1250, 2005  相似文献   

18.
BACKGROUND: Sulfonated poly(ether ether ketone) (SPEEK) was successfully synthesized from sulfonated 4,4′‐difluorobenzophenone, 4,4′‐difluorobenzophenone and bisphenol A. SPEEK cation exchange membranes were prepared by the casting method. The composition and morphology of SPEEK were characterized using Fourier transform infrared and 1H NMR spectroscopies, respectively. The ion exchange capacity (IEC), water uptake and degree of swelling of the membranes were also investigated. SPEEK120 was used as a separator in an electrolysis cell to produce thioglycolic acid (TGA). RESULTS: SPEEK polymerization was carried out at 145 and 175 °C for 10 h. The IEC of the SPEEK membranes was measured as 0.24–2.02 meq g?1 and the water uptake as 2.26–26.45%. The degree of swelling of the membranes was 1.71–15.28%. TGA was effectively prepared by electro‐reduction of dithioglycolic acid. The current efficiency peaked at 58.31% at room temperature with a current density of 15 mA cm?2. CONCLUSION: SPEEK120 membrane shows good dimensional stability and H+ permeability. Compared to the traditional metal‐reduction method, the current electro‐reduction technique avoids the use of zinc powder and so reduces environmental pollution. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
The thermal and mechanical properties of phenolphthalein polyethersulfone/poly(phenylene sulfide) (PES-C/PPS) blends were studied using a differential scanning calorimeter, a dynamic mechanical analyzer, and mechanical characterization. The morphologies of fracture surfaces were observed by scanning electron microscopy. The blends are multiphase systems with strong interaction between the two phases. It is of interest that, although the strength and ductility of PPS are lower than those of PES-C, the addition of PPS can improve markedly the impact strength of PES-C without changing its higher strength. The PPS can also act as a flow aid for PES-C. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Sulfonated brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPOBr) was synthesized by a sequence of bromination and sulfonation. A thin film of SPPOBr was coated on top of a commercial poly(ether sulfone) membrane. Pure butoxyethanol (BE) solvent or a BE/isopropyl alcohol (IPA) solvent mixture was used to dissolve SPPOBr in the coating process. The thin film composite membranes so prepared were then tested for the separation of carbohydrate and electrolyte solutes. We found that the flux and the carbohydrate separation both increased significantly with increasing IPA content in the solvent mixture. However, the separation of electrolyte solutes did not change significantly. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2624–2628, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号