首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel salt‐resistant superabsorbent composite was prepared by copolymerization of partially neutralized acrylic acid, 2‐acryloylamino‐2‐methyl‐1‐propanesulfonic acid (AMPS) and attapulgite (APT). To enhance the swelling rate (SR) of the copolymer, sodium bicarbonate was used as a foaming agent in the course of copolymerization. Furthermore, for improving the properties of swollen hydrogel, such as strength, resilience and dispersion, the copolymer was surface‐crosslinked with glycerine and sodium silicate, and then the surface‐crosslinked copolymer was blended with aluminum sulfate and sodium carbonate in post treatment process. The influences of some reaction conditions, such as amount of AMPS, APT, and initiator, and neutralization degree of acrylic acid on water absorbency in 0.9 wt% NaCl aqueous solution both under atmospheric pressure (WA) and load (WAP, P ≈ 2 × 103 Pa) were investigated. In addition, the effect of them on SR was also studied. The WA and WAP of the superabsorbent composite prepared under optimal conditions in 0.9 wt% NaCl aqueous solution were 52 g·g?1 and 8 g·g?1, respectively. Besides, the SR was fast, and it could reach 0.393 mL·(g·s)?1. Moreover, the swollen hydrogel possessed excellent salt resistance, hydrogel resilience and dispersion. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

2.
Synthesis of superabsorbent hydrogel (SAHG) of acrylic acid‐potassium acrylate copolymer by direct Ultraviolet (UV) photopolymerization is a new method. The effects of degree of neutralization of acrylic acid (AA), photoinitiators, crosslinking agents, and exposure time of UV light on water absorbent properties were investigated. The results showed that the water absorbency (Q) and the salt solution (NaCl, 0.9%) absorbency (Qs) of SAHG, based on Irgacure 651, are high, reaching about 1400 and 130 mL/g, respectively. UV absorption spectrum proved that peak of UV absorption of Irgacure 651 matched the UV light source we used. Among the crosslinking agents, N,N′‐methylene bisacrylamide is more efficient than others, because of its very small content and high Q. 13C NMR spectrometry was used to identify the mechanism of crosslinking reaction through esterification of hydroxyethyl acrylate (HEA) and 2‐hydroxypropyl acrylate (HPA) with carboxylic acid group in acrylic acid‐ammonium acrylate copolymerization, but efficiency of crosslinking reaction by esterification was lower than that of copolymerization of vinyl group in crosslinking agent. The Q of acrylic acid‐potassium acrylate copolymer of SAHG reaches 1592 mL/g under the following conditions: degree of neutralization of acrylic acid is 80%, content of Irgacure 651 is 0.25 wt %, content of HEA is 0.2 wt %, and exposure time is 10 min. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1181–1187, 2006  相似文献   

3.
The synthesis of novel superabsorbent hydrogels was investigated with the reaction of cotton cellulose and succinic anhydride (SA) in the presence of 4‐dimethylaminopyridine as an esterification catalyst in a mixture of lithium chloride (LiCl) and N‐methyl‐2‐pyrrolidinone (NMP) or in a mixture of tetrabutylammonium fluoride (TBAF) and dimethyl sulfoxide (DMSO), followed by NaOH neutralization. Interestingly, a hydrogel was obtained without any crosslinking agent, and this indicated the partial formation of a diester between the cellulosic hydroxyl group and SA. The products obtained in LiCl/NMP exhibited superior absorbency to these obtained in TBAF/DMSO. The former absorbed an amount of water about 400 times its dry weight, and this was comparable to a conventional sodium polyacrylate superabsorbent hydrogel. Furthermore, in an aqueous NaCl solution, the absorbency of the product hydrogels was higher than that of the sodium polyacrylate superabsorbent hydrogel. The formed hydrogels biologically degraded almost completely after 25 days, and this showed their excellent biodegradability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3251–3256, 2006  相似文献   

4.
A novel semi‐interpenetrating polymer networks (semi‐IPNs) porous salt‐resistant superabsorbent composite was prepared by copolymerization of partially neutralized acrylic acid and acrylamide using polyethylene glycol as semi‐IPNs composite, N,N′‐methylenebisacrylamide, triene propanol phosphate, and trihydroxymethyl propane glycidol ether as crosslinking agents, methanol, propanol, and butanol as foaming agents, and L ‐ascorbic acid and peroxide hydrogen as initiators. To improve the properties of swollen hydrogel, such as strength, resilience, permeabilities, and dispersion, the copolymer was surface‐crosslinked, and then blended with aluminum sulfate, sodium carbonate, and sodium 1‐octadecanol phosphate in the course of post treatment. The influences of reaction conditions on properties of superabsorbent composite were investigated and optimized, and the water absorbency of superabsorbent composite prepared at optimal conditions in 0.9 wt% NaCl aqueous solution under atmospheric pressure and certain load (P ≈ 2 × 103 Pa) were 61 g g?1 and 16.7 g g?1, respectively. Moreover, the swelling rate reached 22.003 × 10?3 g (g s)?1. And the excellent hydrogel properties, such as hydrogel strength, resilience, permeabilities, and dispersion were also obtained. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

5.
The phosphorylated poly(vinyl alcohol) (P‐PVA) samples with various substitution degrees were prepared through the esterification reaction of PVA and phosphoric acid. By using chitosan (CTS), acrylic acid (AA) and P‐PVA as raw materials, ammonium persulphate (APS) as an initiator and N,N‐methylenebisacrylamide as a crosslinker, the CTS‐g‐PAA/P‐PVA semi‐interpenetrated polymer network (IPN) ssuperabsorbent hydrogel was prepared in aqueous solution by the graft copolymerization of CTS and AA and followed by an interpenetrating and crosslinking of P‐PVA chains. The hydrogel was characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) techniques, and the influence of reaction variables, such as the substitution degree and content of P‐PVA on water absorbency were also investigated. FTIR and DSC results confirmed that PAA had been grafted onto CTS backbone and revealed the existence of phase separation and the formation of semi‐IPN network structure. SEM observations indicate that the incorporation of P‐PVA induced highly porous structure, and P‐PVA was uniformly dispersed in the polymeric network. Swelling results showed that CTS‐g‐PAA/P‐PVA semi‐IPN superabsorbent hydrogel exhibited improved swelling capability (421 g·g?1 in distilled water and 55 g·g?1 in 0.9 wt % NaCl solution) and swelling rate compared with CTS‐g‐PAA/PVA hydrogel (301 g·g?1 in distilled water and 47 g·g?1 in 0.9 wt % NaCl solution) due to the phosphorylation of PVA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
A novel superabsorbent hydrogel has been synthesized with the crosslinking graft copolymerization of acrylic acid (AA) and acrylamide onto the chain of silk sericin. Potassium persulfate (KPS)–sodium sulfite (NaHSO3) as redox initiation system and N,N′-methylenebisacrylamide (MBA) as crosslinker were used. The structure of the product characterized by Fourier transform infrared absorption spectroscopy and the surface morphology of the hydrogel were observed by scanning electron microscopy. The certain parameters of the graft copolymerization including the monomer, the initiator, the crosslinker concentration, neutralization degree of AA, reaction temperature, and time were systematically optimized to achieve a hydrogel with maximum swelling capacity (2150 g/g). The optimal conditions were initiator 8 mmol/L, MBA 2.5 mmol/L, neutralization degree of AA 75%, reaction temperature 55 °C, and time 6 h. The swelling ratio in salt solutions was also determined (in 0.9% NaCl aqueous solution: 98 g/g). In addition, the swelling capability of the hydrogel was measured in solutions with pH ranged from 1 to 13. The synthesized hydrogel exhibited a pH-dependent character. Water absorbency of the product in aqueous chloride salt solutions has the Na+ > Ca2+ > Mg2+ > Al3+ order in the investigated concentration.  相似文献   

7.
Polyacrylonitrile (PAN)‐grafted sodium salt of partially carboxymethylated tamarind kernel powder (Na‐PCMTKP‐g‐PAN, %G = 413.76 and %GE = 96.48) was prepared using the established optimal reaction conditions for ceric‐initiated graft copolymerization of acrylonitrile onto Na‐PCMTKP (DS = 0.15) in a homogeneous medium. The graft copolymer was hydrolyzed by 0.7N KOH solution at 90–95°C to yield the superabsorbent hydrogel H‐Na‐PCMTKP‐g‐PAN. The nitrile groups of Na‐PCMTKP‐g‐PAN were completely converted into a mixture of hydrophilic carboxamide and carboxylate groups during alkaline hydrolysis, followed by in situ crosslinking of the grafted PAN chains. The products were characterized spectroscopically and morphologically. The swelling behavior of the unreported superabsorbent hydrogel, H‐Na‐PCMTKP‐g‐PAN, was studied by carrying out its absorbency measurements in low‐conductivity water, 0.15M salt (NaCl, CaCl2, and AlCl3) solutions, and simulated urine (SU) at different timings. The swelling behavior of the hydrogel in different swelling media followed the second‐order kinetics. The values of the various swelling characteristics were reported. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
This article reports the cointercalation of acrylic acid (AA) and 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) in the interlayer region of Mg2Al layered double hydroxide (LDH) and the application of this inorganic–organic composite material in the field of water superabsorbent. The monomers of AA and AMPS were cointercalated into galleries of Mg2Al−LDH (denoted as AA−AMPS/LDH) with various molar ratios by ion‐exchange method, which was confirmed by powder X‐ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), and elemental analysis. The polymer‐based superabsorbent was prepared through in situ free‐radical aqueous copolymerization of AA and AMPS, with AA−AMPS/LDH as additive, N,N′‐methylenebisacrylamide (NMBA) as crosslinker and potassium persulfate (KPS) as initiator. The composition of this poly(AA‐co‐AMPS)/LDH was demonstrated as a good water superabsorbent. The LDH content, water absorbency, thermal stability, and swelling rate of this superabsorbent were also investigated in detail. Results showed that the incorporation of a 5 wt % AA−AMPS/LDH into polymer matrix increased its water absorbency significantly by 27.7% (in water) and by 51.5% (in 0.9 wt % NaCl solution). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
A novel poly(acrylic acid)/attapulgite superabsorbent composite was synthesized by graft copolymerization reaction of acrylic acid (AA) on attapulgite micropowder using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator in aqueous solution. The effects on water absorbency of such factors as reaction temperature, initial monomer concentration, degree of neutralization of AA, amount of crosslinker, initiator, and attapulgite were investigated. These crosslinked superabsorbent composites were characterized by thermogravimetetric analysis and scanning electron microscopy. The graft copolymerization reaction of AA on attapulgite micropowder was characterized by FTIR. The water absorbencies for these superabsorbent composites in water and saline solutions were investigated and water‐retention tests were carried out. Results obtained from this study show that the water absorbency of the superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% exhibited an absorption of 1017 g H2O/g sample and 77 g H2O/g sample in distilled water and in 0.9 wt % NaCl solution, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1596–1603, 2004  相似文献   

10.
A new cellulose‐based superabsorbent polymer, carboxymethyl cellulose‐graft‐poly(acrylic acid‐co‐acrylamide), was prepared by the free‐radical grafting solution polymerization of acrylic acid (AA) and acrylamide (AM) monomers onto carboxymethyl cellulose (CMC) in the presence of N,N′‐methylenebisacrylamide as a crosslinker with a redox couple of potassium persulfate and sodium metabisulfite as an initiator. The influences of reaction variables such as the initiator content, crosslinker content, bath temperature, molar ratio of AA to AM, and weight ratio of the monomers to CMC on the water absorbency of the carboxymethylcellulose‐graft‐poly(acrylic acid‐co‐acrylamide) copolymer were investigated. The copolymer's structures were characterized with Fourier transform infrared spectroscopy. The optimum reaction conditions were obtained as follows: the bath temperature was 50°C; the molar ratio of AA to AM was 3 : 1; the mass ratio of the monomers to CMC was 4 : 1; and the weight percentages of the crosslinker and initiator with respect to the monomers were 0.75 and 1%, respectively. The maximum water absorbency of the optimized product was 920 g/g for distilled water and 85 g/g for a 0.9 wt % aqueous NaCl solution. In addition, the superabsorbent possessed good water retention and salt resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1382–1388, 2007  相似文献   

11.
A novel starch‐graft‐poly(acrylamide)/attapulgite superabsorbent composite was synthesized by graft copolymerization reaction of starch, acrylamide (AM), and attapulgite micropowder using N.N‐methylene‐bisacrylamide (MBA) as a crosslinker and ammonium persulphate (APS) as an initiator in aqueous solution, followed by hydrolysis with sodium hydroxide. The effects on water absorbency, such as amount of crosslinker, initiator, attapulgite, weight ratio of acrylamide to starch in the feed, gelatinization conditions of starch and molar ratio of NaOH to acrylamide, and so forth, were investigated. These superabsorbent composites were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The water absorbencies for these superabsorbent composites in water and saline solution were investigated, and water retention tests were carried out. Results obtained from this study showed that the water absorbency of superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% exhibit absorption of 1317 g H2O/g sample and 68 g H2O/g sample in distilled water and in 0.9 wt % NaCl solution, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1351–1357, 2005  相似文献   

12.
Summary: A new superabsorbent polymer, PAMA, has been prepared in an aqueous solution using acrylamide (AM) and 2‐acrylamido‐2‐methyl‐propanesulfonic acid (AMPS) as monomers, potassium persulfate (PPS) as initiator, and N,N′‐methylenebisacrylamide (NMBA) as cross‐linker. The absorbing properties and water retention of PAMA have been investigated. It is found that the absorbency of PAMA can reach 2 451 and 119 g · g?1 in distilled water and in 0.9 wt.‐% NaCl solution, respectively. This copolymer also can absorb a large amount of pure methanol (277 g · g?1), a property that has not been reported for the other superabsorbent polymers in the literature. The swelling behavior of PAMA in some water/organic solvent mixtures and water retention of PAMA in sand have been investigated.

Water retention of the PAMA in sand at 80 °C. 1) Sample containing PAMA; 2) Sample without PAMA.  相似文献   


13.
This article exploits a new approach for synthesis of acrylic acid/carboxymethyl cellulose (AA/CMC) superabsorbent hydrogel in aqueous solution by a simple one‐step using glow‐discharge electrolysis plasma, in which N,N′‐methylenebisacrylamide (MBA) was used as a crosslinking agent. The reaction parameters affecting the equilibrium swelling, that is, discharge voltage, discharge time, mass ratio of AA to CMC, content of crosslinker, and degree of neutralization, were systematically optimized to achieve a superabsorbent hydrogel with a maximum equilibrium swelling. The structure, thermal stability, and morphology of AA/CMC superabsorbent hydrogel were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction analysis, thermogravimetric analysis, and scanning electron microscopy. The swelling kinetics in distilled water and swelling behaviors in various pH solutions and salts solutions (NaCl, KCl, MgCl2, CaCl2, AlCl3, and FeCl3) were investigated in detail. The effect of six cationic salt solutions on the equilibrium swelling had the following order K+ > Na+ > Mg2+ > Ca2+ > Al3+ > Fe3+. In addition, the pH‐reversibility was preliminarily investigated with alternating pH between 6.5 and 2.0. The results showed that the equilibrium swelling of AA/CMC was achieved in 90 min. The hydrogel was responsive to the pH and salts, and was reversible swelling and deswelling behavior. POLYM. ENG. SCI., 54:2310–2320, 2014. © 2013 Society of Plastics Engineers  相似文献   

14.
Al3+‐attapulgite (Al3+‐APT) was prepared by treating attapulgite (APT) with AlCl3 aqueous solution of various concentrations. The poly(acrylic acid)/Al3+‐attapulgite (PAA/Al3+‐APT) superabsorbent composite was prepared by reaction of partly neutralized acrylic acid, and Al3+‐APT in aqueous solution using N, N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. The surface morphology of the composite was investigated by SEM, and the Al3+‐APT composite generated a relatively planar surface comparing the nature APT. The effects of Al3+‐APT on hydrogel strength and swelling behaviors, such as equilibrium water absorbency, swelling rate, and reswelling capability, of the superabsorbent composites were also studied. The hydrogel strength and reswelling capability were improved, however, the equilibrium water absorbency and swelling rate decreased with increasing AlCl3 solution concentration. The equilibrium water absorbency firstly increased, and then decreased with increasing Al3+‐APT content. The results indicate that Al3+‐APT acts as an assistant crosslinker in the polymeric network, which has great influences on hydrogel strength and swelling behaviors of the PAA/Al3+‐APT superabsorbent composites. POLYM. ENG. SCI., 47:619–624, 2007. © 2007 Society of Plastics Engineers.  相似文献   

15.
A series of superabsorbent composite, polyacrylamide/attapulgite, from acrylamide (AM) and ion‐exchanged attapulgite (APT) was prepared by aqueous polymerization, using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The effects of ion‐exchanged APT on water absorbency of superabsorbent composites in distilled water and in 0.9 wt% NaCl solution were studied. The result indicates that higher cation‐exchange capacity (CEC) and lower specific surface area (SSA) of APT treated with various anions are of benefit for improving water absorbency in distilled water. The effects of AlCl3 solution concentration and Al3+‐exchanged APT content on water absorbency of the composite were also investigated. The concentration of AlCl3 solution has a great influence on water absorbency of the superabsorbent composite. Al3+‐exchange of APT could also enhance reswelling ability of the corresponding composite, which indicates that Al3+‐exchange of APT could improve gel strength and gives a direct evidence for its acting as an inorganic assistant crosslinker in the polymeric network. POLYM. COMPOS., 28:208–213, 2007. © 2007 Society of Plastics Engineers  相似文献   

16.
A superabsorbent composed of waste polystyrene, starch, and acrylic acid was prepared through emulsion polymerization. The effects of major factors such as starch, acrylic acid, initiator, crosslinker, and bentonite contents and the neutralization degree of acrylic acid on water absorbency were investigated to obtain optimum conditions with high swelling capacity. The superabsorbent hydrogel was characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The FTIR results confirmed that the grafting polymerization took place among the polystyrene, acrylic acid, starch, and bentonite. The introduction of bentonite particles into the polystyrene‐g‐poly (acrylic acid)‐co‐starch system could increase the water absorbency. The superabsorbent composite containing 3 wt % bentonite had the highest water absorbency (500 g/g in distilled water and 49 g/g in 0.9 wt % NaCl solution). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
A new konjac glucomannan (KGM)-based superabsorbent polymer, KGM-g-poly(acrylic acid-co-acrylamide), was prepared by the free radical grafting solution polymerization of acrylic acid (AA) and acrylamide (AM) monomers onto KGM in the presence of N,N′-methylenebisacrylamide as a crosslinker with potassium persulfate as an initiator. The effects of reaction parameters, including the amount of crosslinking agent and initiator, the weight ratio of both (AA + AM) to KGM and AM to (AA + AM), neutralization degree of AA, bath temperature, and reaction time, on the water absorbency of the superabsorbent were investigated. The Fourier transform infrared spectroscopy was used to characterize the structures of the copolymer. The maximum water absorbency of the optimized product was 650 g/g for distilled water and 70 g/g for a 0.9 wt % aqueous NaCl solution. Furthermore, the water retention of the copolymer in soils was studied. The effect of the copolymers on the aggregate distribution of soils was also evaluated. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
A novel poly(acrylic acid)/attapulgite (APT)/sodium humate (SH) superabsorbent composite was synthesized through the graft copolymerization reaction of acrylic acid on APT micropowder and SH with N,N′‐methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator in an aqueous solution. Various effects on the water absorbency, including the amounts of the crosslinker, initiator, APT, and SH, were investigated. The superabsorbent composite was characterized with Fourier transform infrared spectroscopy and scanning electron microscopy. The superabsorbent composite synthesized under optimal synthesis conditions with an APT concentration of 20% and an SH concentration of 20% exhibited absorption of 583 g of H2O/g of sample and 63 g of H2O/g of sample in distilled water and in a 0.9 wt % NaCl solution, respectively. The slow‐release property of SH from the superabsorbent composite into water was measured, and a test of the water retention of the superabsorbent composite in soil was also carried out experimentally with and without the superabsorbent composite. The results showed that the superabsorbent composite had not only good water retention but also an additional slow‐release property of SH. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 37–45, 2007  相似文献   

19.
A poly‐matrix composite—poly(sodium acrylate) (PSA)/hydrotalcite (HT) (PSA/HT) nanocomposite superabsorbent—with obvious improvements in both the water absorbency and salt absorbency has been prepared by the intercalated HT, using sodium methyl allyl sulfonate as an intercalation agent. The superabsorbents acquired their highest water (salt) absorbency when the content of HT is 3 wt%. The highest absorbency for deionized water and 0.9 wt% NaCl (aq) were 1100 g/g and 145 g/g, respectively. Microstructures were analyzed by X‐ray diffraction and scanning electron microscope. Chemical analysis was determined measurements. Results showed that HT incorporated into the superabsorbents was by Fourier infrared spectroscopy and energy dispersion spectroscopy. Results showed that the superabsorbent particles were in the form of spheres, and the hydrogels were in the form of regular network structures. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

20.
A series of novel multifunctional poly (acrylic acid‐co‐acrylamide) (PAA‐AM)/organomontmorillonite (O‐MMT)/sodium humate (SH) superabsorbent composites were synthesized by the graft copolymerization reaction of partially neutralized acrylic acid and acrylamide on O‐MMT micropowder and SH with N,N′‐methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator in an aqueous solution. The superabsorbent composites were characterized by means of Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The effect of the relative weight ratio of SH to O‐MMT on the water absorbency was studied, and the results indicated that the best water absorbency of 591 g/g in distilled water was obtained when an O‐MMT content of 20 wt % and an SH content of 30 wt % were incorporated. The superabsorbent composite possessed a good capacity for water retention; even after 30 days, 24.4 wt % of water could still be saved by the sand soil containing 1.0 wt % superabsorbent composite. The results from this study show that the water absorbency of a superabsorbent composite is improved by the simultaneous introduction of O‐MMT and SH into a PAA‐AM network in comparison with the incorporation of only O‐MMT or SH. Also, in comparison with PAA‐AM/MMT/SH, an appropriate amount of O‐MMT can benefit the developed composites with respect to their water absorbency, salt resistance, and capacity for water retention in sand soil. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号