首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水溶液中挥发性有机化合物渗透蒸发分离技术   总被引:5,自引:0,他引:5  
介绍了水溶液中挥发性有机化合物 (VOCs)的各种分离方法 ,重点分析了渗透蒸发分离技术经济优势。阐释了渗透蒸发膜的选择标准、渗透蒸发过程的传质机理 ,以及原料液浓度、原料液温度、原料液流量、渗透侧压力、添加剂和膜组件型式等因素对渗透蒸发过程分离效率的影响 ,并简要预测了渗透蒸发过程的发展趋势与动态。  相似文献   

2.
Paper membranes made from vulcanized cellulose were used for the pervaporation (PV) of aqueous solutions containing methanol, ethanol, and isopropanol. It was noted that the vulcanized cellulose paper membranes (VCPM) could effectively separate alcohol and water from the mixture solutions. To observe the effect of the separation of alcohol aqueous mixtures, the permeation behavior of water and alcohol was examined by means of the separation factor and the permeation flux. The values of the permeation flux in the ethanol/water mixtures were found to vary from 6.2 kg/m2h to 2.1 kg/m2h, as the concentration of ethanol increased from 8 to 87 wt %, and the separation factor (α) changed from α = 2.6 to 6.6, respectively. This showed that the VCPM enhanced the separation of water and alcohol. The highest value observed for the permeation flux was 11 kg/m2h at 87 wt % of methanol concentration and the separation factor at this condition was 4.1. It was shown also that an efficient separation was obtained in the isopropanol/water mixture with a separation factor of 16.6. The contact angles of alcohol/water droplets on the VCPM were measured as well as the wettability of the membrane. There was a tendency of decrease for the contact angle, as the alcohol concentration decreased. This suggested that the solvent wettability decreased in high alcohol concentrations. It was concluded that a high permeabilitty of water through the VCPM resulted in the separation of alcohols and water in the PV process. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Hydroxy‐terminated polybutadiene‐based porous and nonporous polyurethaneurea membranes were prepared and used to study the phenol separation efficiency from dilute aqueous solution. The porosity was developed by incorporation of lithium chloride in polymer matrix with subsequent leaching of the same in hot water. The porous membrane showed higher phenol flux over that of nonporous membrane. Permeate containing about 97 wt % phenol was obtained from feed containing 7 wt % phenol, when pervaporation was carried out with porous polyurethaneurea membrane at 75°C. The activation energies for diffusion, permeation, and pervaporation were calculated from Arrhenius plots. From the activation energy values, it was observed that the pervaporation process became easier with increased phenol concentration in the feed and porosity of the membrane used. The membrane boundary resistance was observed to decrease with increase in temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1857–1865, 2006  相似文献   

4.
建立了八种农药类环境内分泌干扰物的胶束毛细管电泳快速分离方法。优化出的毛细管电泳分离条件为:缓冲溶液为含50mM十二烷基硫酸钠(SDS)和5%乙腈的15mM硼砂溶液(pH=8.7),毛细管有效长度31.5cm,分离电压30kv,在各组分的最大吸收波长下采用二极管阵列检测器检测。各组分在5min内获得完全分离,迁移时间的相对标准偏差在1.1~2.1%之间。  相似文献   

5.
The extraction of 1-butanol from fermentation broths by pervaporation offers potential for use in biotechnology. Various membrane materials have been screened for their suitability for this process. Polydimethylsiloxane (PDMS) membranes gave the best results in terms of flux and selectivity, with large variations depending on their nature and preparation. Selectivity was further increased by including either organophilic adorbents (cyclodextrins, zeolites), or oleyl alcohol in dense PDMS membranes. The predominance of driving force (i.e. activity gradient) on pervaporation extraction performances was shown by a comparative study on different binary aqueous solutions of alcohols. Water flux remained practically constant while the alcohol flux was linearly related to its feed concentration. The conclusions obtained with binary mixtures were consistent with those obtained with two model ternary solutions; the influence of salt on 1-butanol permeability was negligible, whereas ethanol had a strong effect.  相似文献   

6.
The composite membranes of acrylate polymers and porous substrate were prepared. The separation of the organic solvent–water mixtures and the organic solvent–organic solvent mixtures through these membranes by pervaporation was investigated. The acrylate copolymer membrane showed the organic solvent permselectivity for the separation of the organic solvent–water mixture, especially for the chlorinated hydrocarbon–water mixture separation. The high organic solvent permselectivity should be governed by solubility selectivity. The influence of the ester residue of acrylate on the phenol–water mixture separation was observed. The copolymerization of the macromonomers containing the polystyrene, poly(methyl methacrylate), and polydimethylsiloxane chain had a small effect on the separation of the chlorinated hydrocarbon–water mixture. High flux and low selectivity of organic solvent were observed in the case of the organic solvent mixture separation through the n-butylacrylate membrane. The difference of permeability of organic solvent was observed for the acrylate copolymer which has various structures of ester residue. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 1483–1494, 1998  相似文献   

7.
The separation of a phenol-water mixture using a polyurethane membrane by a pervaporation method was investigated. Polyurethane was selected as a membrane material because its affinity for phenol was considered to be high. Polyurethane was prepared by the polyaddition of 1,6-diisocyanatohexane and polytetramethyleneglycol. The polyurethane layer was sandwiched with a porous polypropylene membrane (Celgard® 2500). Pervaporation measurement was carried out under vacuum on the permeate side, and the permeate vapor was collected with a liquid nitrogen trap. The phenol concentration in the permeate solution increased from 0 to 65 wt % with increasing feed concentration of phenol from 0 to 7 wt %. The total flux also increased up to 930 g m-2 h-1 with increasing phenol partial flux. In the sorption measurement at 60°C, the concentration of phenol in the membrane was 68 wt %, which was higher than that of the permeate solution. Therefore, it was considered that the phenol selectivity was based on high solubility in the polyurethane membranes. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:469–479, 1997  相似文献   

8.
For the separation of volatile organic compounds (VOCs) from water by pervaporation, three polysiloxaneimide (PSI) membranes were prepared by polycondensation of three aromatic dianhydrides of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA) with a siloxane‐containing diamine. The PSI membranes were characterized using 1H‐NMR, ATR/IR, DSC, XRD, and a Rame‐Hart goniometer for contact angles. The degrees of sorption and sorption selectivity of the PSI membranes for pure organic compounds and organic aqueous solutions were investigated. The pervaporation properties of the PSI membrane were investigated in connection with the nature of organic aqueous solutions. The effects of feed concentration, feed temperature, permeate pressure, and membrane thickness on pervaporation performance were also investigated. The PSI membranes prepared have high pervaporation selectivity and permeation flux towards hydrophobic organic compounds. The PSI membranes with 150‐μm thickness exhibit a high pervaporation selectivity of 6000–9000 and a high permeation flux of 0.031–0.047 kg/m2 h for 0.05 wt % of the toluene/water mixture. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2691–2702, 2000  相似文献   

9.
10.
Separation of components of aqueous waste streams containing organic pollutants is not only industrially very important but also is a challenging process. In this study, separation of a phenol–water mixture was carried out by using a membrane pervaporation technique with indigenously developed polyimide membranes. The membranes were found to permeate water selectively. The total flux as well as that of the individual components were measured. The effect of lithium chloride modification of polyimide film on total flux was investigated. The total flux obtained with 2% lithium chloride modification was about 3.6 times higher than that obtained with virgin membrane. The effects of different parameters such as feed composition and temperature on flux, and separation factor were determined. With modified membrane, a separation factor as high as 18.0 was obtained for water at 27°C and with 8.0 wt % phenol solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 822–829, 2002  相似文献   

11.
Pervaporation of 1,2‐dimethoxyethane (1,2‐DME) is evaluated by crosslinked oligosilylstyrene–poly(dimethylsiloxane) composite membranes. A low flow velocity of the feed solution (1.0 L/min), corresponding to a Reynolds number of 220, is used. The pervaporation models are developed by combining the resistance in series and solution–diffusion models. The effects of the boundary layer on the performance of pervaporation are estimated by comparing experimental and theoretical data. The permeation fluxes of 1,2‐DME and water fit very well with the calculated data from the models, but a deviation of the separation factor between the experimental and theoretical data is observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:2075–2084, 2006  相似文献   

12.
The structure and the adsorption–desorption properties of zeolite silicalite-I by different treatments after synthesis were studied. The pervaporation properties of the alcohol–water mixture through silicone rubber filled with zeolite silicalite-I by different treatments were also investigated. Treating silicalite-I by acid or/and under steam was found to eliminate the metallic impurities in the zeolite and to perfect the crystalline structure of the zeolite. After treatment, silicalite-I is more selective to alcohol and the desorption of the alcohol from the zeolite is also easier. The silicone rubber membrane filled with treated silicalite-I shows a high performance for alcohol extraction from the dilute aqueous solution by pervaporation. The separation factor of the poly(dimethyl siloxane) (PDMS) membrane filled with silicalite-I treated successively by acid and steam is about 30 when the ethanol content in the feed is 5 wt % at 50°C. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 629–636, 1998  相似文献   

13.
The pervaporation performances of a series of functionalized syndiotactic poly(styrene‐co‐4‐methylstyrene) (SPSM) membranes for various alcohol mixtures were investigated. The syndiotactic polystyrene copolymers, poly(styrene‐co‐4‐methylstyrene) (SPSM), were prepared by styrene with 4‐methylstyrene using a Cp*Ti(OCH3)3/methyl aluminoxane (metallocene/MAO) catalyst. The effect of functionalization on the thermal properties and polymer structure of the SPSM membranes were also investigated. The crystallinity of the functionalized SPSM membrane is lower than that of the unfunctionalized SPSM membranes. The water molecules preferentially permeate through the SPSM membranes. Compared with unfunctionalized SPSM membranes, the functionalized SPSM membrane effectively increases the membrane formation performances and the pervaporation performances. The optimun pervaporation performance (a separation factor of 510 and permeation rate of 220 g/m2h) was obtained by the bromination of SPSM (SPSMBr) membrane with a 90 wt % aqueous ethanol solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2247–2254, 2002  相似文献   

14.
Styrene butadiene rubber (SBR) was efficiently cured (crosslinked) by using sulfur to accelerator ratio less than unity. This cured SBR was further compounded with carbon black filler (grade N330) with three different doses i.e., 5, 10, and 20 wt % of filler to form three different filled and crosslinked membranes, i.e., SBR5, SBR10, and SBR20. These filled rubber membranes and one unfilled but efficiently cured membrane, i.e. SBR0, were used for pervaporative removal of pyridine from its mixtures with water. The filled membranes were found to show better selectivity and mechanical properties but lower flux than the unfilled membrane. All of these membranes showed reasonably good range of flux and pyridine selectivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
BACKGROUND: In the present work, the flavor compounds of natural juice of bilberries were qualitatively analyzed by GC‐MS, leading to the identification of trans‐Hex‐2‐en‐1‐ol as one of the major ‘impact aroma’ compounds of this fruit. The pervaporation of trans‐Hex‐2‐en‐1‐ol from diluted aqueous solutions was studied using commercial polydimethylsiloxane (PDMS) capillary membranes. The influences of solvent composition (water/ethanol mixtures), initial concentration of the aroma compound, flow rate and temperature of the feed were studied. RESULTS: High selectivity of the PDMS membrane towards the aroma compound was obtained, leading to enrichment factors in the range 100 < β < 200. Mass transfer resistance was found to be located in the pervaporation membrane. Experimental data showed a linear dependency of the permeation flux of trans‐Hex‐2‐en‐1‐ol on the differences in partial pressures of the compound across the pervaporation membrane. The permeability coefficient of the PDMS membrane to the transport of trans‐Hex‐2‐en‐1‐ol was calculated as Pm, Hex(50 °C) = 7.62 × 10?11 mol m?1 s?1 Pa?1. CONCLUSION: The membrane used was found to be very selective toward trans‐Hex‐2‐en‐1‐ol. A model based on the solution‐diffusion mechanism was applied. The mass transfer parameters needed for the design of a pervaporation process for aroma compound recovery were obtained. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
以聚醚嵌段共聚酰胺(PEBA2533)为膜材料,采用干法相转化法制备性能优异的高分子膜,用于渗透汽化-结晶耦合(PVCC)分离系统中回收稀水溶液中的香兰素。采用扫描电子显微镜(SEM)对PEBA2533膜的形貌进行表征。考察原料液浓度、温度对膜渗透汽化性能的影响。结果表明:随着溶液浓度的增加,PEBA2533膜溶胀性能增加,说明PEBA2533能够优先吸附香兰素;随原料液浓度增加,香兰素渗透通量增加,分离因子略微下降;原料液温度增加,香兰素渗透通量和分离因子都增加;并通过Arrhenius方程计算得到香兰素比水对温度更加敏感。PVCC系统中控制一级冷凝器温度为2℃时,一级冷凝器中结晶态香兰素通量为39.52 g·m-2·h-1,纯度在99%以上。  相似文献   

17.
甲醇脱水新工艺研究   总被引:2,自引:0,他引:2  
介绍了用PVA/PAN复合膜脱除甲醇中少量水的新工艺,讨论了操作条件对分离性能的影响。  相似文献   

18.
Based on the concept in clinical diagnostics that the principal binding protein in blood for estrogens and androgens, sex hormone‐binding globulin (SHBG), determines the estrogenic/androgenic status of humans, a new assay was developed. The format of this assay was similar to a competitive radioimmuno assay, wherein SBHG as capture protein was coupled to microtiter plates coated with anti‐SHBG antibody and tritiated estradiol was used as a tracer. Due to its affinity for SHBG relative to estradiol, testosterone was selected as sensitive reference compound to assess any estrogenic activity of environmental contaminants and a reference curve was established. Test compounds included endogenous steroids, pharmaceutical substances, pesticides and industrial pollutants. For each test compound a competition curve of similar shape was obtained and compared to that of testosterone. Displacement of tritiated estradiol indicated an affinity of a certain substance for SHBG and, consequently, an estrogenic activity. Among the compounds tested, strong displacement was demonstrated for estradiol, diethylstilbestrol (DES), norgestrel, permithrin, nonylphenol and bisphenol‐A; followed by dehydro‐isoandrosterone, 6a‐methylprednisolone, androsterone, 2,4‐D, dichlofluanid, vinclozolin, and malathion. No affinity could be observed for atrazin, simazin, hexaconazole, tebuconazole, glyphosate, and aldicarb. Further, combinations of some of the compounds tested showed no additive or synergistic effects. Our data are discussed in relation to those reported in the literature. Other hormone‐binding proteins from human blood are proposed for further research on hormone‐disrupting xenobiotics.  相似文献   

19.
BACKGROUND: In this work, the selective extraction of ethanol by pervaporation through a POMS (polyoctylmethyl siloxane) hydrophobic membrane supplied by GKKS (Germany) was investigated. First, binary ethanol aqueous solutions were studied considering the effect of ethanol feed concentration (0–11 wt%) and operating temperature (307.55–326.35 K). The effect of some by‐products of the ethanol fermentation, such as glycerol, succinic acid, butanol and acetone, on the pervaporation performance has been analyzed. RESULTS: For binary ethanol aqueous solutions, it was found that water permeation flux remained more or less constant while ethanol permeation flux increased continuously when increasing ethanol feed concentration. However, water and ethanol permeances did not change much in the concentration and temperature range studied. It was observed that the addition of glycerol and succinic acid sharply decreased the total permeation flux while ethanol concentration in the permeate was hardly affected. The addition of butanol and acetone resulted in a lower separation factor for ethanol through the POMS membrane. CONCLUSIONS: For ethanol aqueous solutions the POMS membrane was found to be selective towards ethanol, although it does not present higher separation factors than distillation in the concentration range covered in this work. The presence of other components of the fermentation broth has a great influence in the pervaporation behavior. Further work must be done on the study of multicomponent and real mixtures. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
The experimental investigation of the separation of tetrahydrofuran‐methanol by heteroazeotropic‐batch‐distillation and methanol‐hexane by pervaporation is presented. In particular for this last task, four different specialty commercial membranes were tested (varying feed concentration and temperature). The “pore filling” PolyAn membranes show methanol permeance values higher than 5100 GPU (Typ M2®); separation factor of 19; and a selectivity of about 119 (Typ M1®). From the results, a coupling phenomenon was observed. An assessment of the temperature effect in the pervaporation process corroborates the hypothesis of the presence of a coupling phenomenon. Finally, a discussion is made on two industrial scale units for the separation of the same mixture: a system of a distillation column integrated with a decanter and stand‐alone pervaporation unit. The energetic comparison shows that when using pervaporation a large reduction of the energetic consumption compared to a conventional distillation system (up to 29%) can be obtained. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2584–2595, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号